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e The core idea of this paper: you can't (formally) gain by
learning with multiple events at once, f = f(x1, ..., Xn).

= This may be obvious to some of you and it may
violate the intuition of others.

= [here may be practical situations where it is better to
train a classifier/regressor to process multiple events
at once, especially if training can be made simpler.

e |n addition to explaining the core idea, I'll describe some
other statistical facts that may be useful for classification,
inference, etc.




The statistical structure of collisions

To a very good approximation, collisions are independent;

p({xy,....xy}10) =TT, p(x;16)

X; are features to represent events
(could be low-level or high-level)



The statistical structure of collisions

This means that the per-ensemble likelihood ratio can be
written as a product of per-event likelihood ratios.
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This explains the informational equivalence of an optimal
per-ensemble learning (left) and a per-event learning (right)

Collections of N events have more info than single events, but a
per-event classifier applied N times has access to the same info.



Brief review: per-instance classification

N

We start with a loss function(al):
L[f] - zi€class AA(f(xi)) - ZiECIaSS B B(f(xi))

It Is often useful to consider the continuum limit;

Lf] = = [dx (p(x| 0)A(f(x)) + p(x| 6p)B(f(x)))

ypically, A = log and B = 1-log



Brief review: per-instance classification

N

Functional optimization shows that

- B(j)) _ px|6,) - Optim?ﬂ
A'(f(x)) p(x|6p) classifier

This means that there are many loss tfunctionals (defined
by A and B) which result in an optimal classitier.



Brief review: per-instance classification \

B(fx))  p(x|6,) < Optimal

_A’(f(x))  p(x]|6p) classifier

Since it simplifies much of the notation, consider
the “maximum likelihood classifier” (MLC) loss”*
with A(f) = log(f) and B(f) = 1-f. Then,

p(x|6y)  The loss value itself is the KL
divergence between the
p(x|0p) conditional probabilities

argmin:Lyy ol f] =

*This was introduced in its exponential form by R. T. D’Agnolo and A. Wulzer in PRD 99 (2019) 015014, 1806.02350



Per-ensemble classification

One could insert N events instead of one into the MLC loss:
Ly clfy]l = — [d¥x (K10 log fu(X7) + p(X | 0p)(1 — fiy(X)))

Unsurprisingly,

P(7 N,
P(7 )

argming Ly ol fy] =



Per-ensemble classification

P(7 0,)
P(7 )

argming Ly ol fy] =

owever, we can also build this up from one event:

P(7 0,)
P(7 O)

fl—)N = Hi‘ilfl(xi) —

It X 1s k-dimensional, then 71 only requires samples of
while fy requires samples of



Per-ensemble classification

P(7 0,)
P(7 o,

f1—>N = Hi‘ilfl(xi) e

't Is also possible to go In the converse direction:

fN(Y) = Hi‘ilfN—A(xi)

Where the entire righthand side is used to minimize
the ensemble MLC loss. This construction is at the
core of set-based neural networks like Deep Sets.



Examples: Classification
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Examples: Classification [Gaussian] \
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Examples: Classification [Gaussian] \
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Examples: Classification [BSM]
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Examples: Classification [BSM]
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Examples: Classification [BSM]
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Per-ensemble regression |

Most common strategy Is maximum likelihood:

Oy = argmax,p(x | 6)

(see paper for other examples beyond regression,
e.g. estimating the mutual information)



Per-ensemble regression |

Most common strategy Is maximum likelihood:
Oy = argmax,p(x | 6)

One way of doing this would be to train a
parameterized classifier using the MLC loss

(x| 0) :
fx.6) = 242 — 6y = argmin, { — > log fix, 9)}




Per-ensemble regression Il

p(x|0)

fe,0) = L2 6y, = argmin, { — > log i, 9)}
0

This requires two steps (amortized). Can we do it in one step?

argmax {minf Lyt clf] } = O\

This does it all In one step, but does
require a minimax optimization



Per-ensemble regression Il

You may also ask, why not directly regress 6 from N events?

Lyselan] = — [dVxp(%,0) (gy(F) — 0)°

This is prior-dependent, but it is well-known that formally:

gN(Y) = (0 7)



Per-ensemble regression Il

8N(7) = (0 7)

o (F) = Jd@ 0p(0] T)

J 100 p(x'|0) p(6)

p(x)
p(x’|0)
— p(H) > 0) (0
[dor 222 pory [do (X0 p(6')
P(7|‘90)

.e. this Is still secretly per-event classitication |



Examples: Regression LEEUESER] ;
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Examples: Regression [top quarks] ;
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In both cases, the per-instance approaches give the
same result as the per-ensemble approach



Conclusions and outlook

Today, |'ve told you about the
interplay between per-event
and per-ensemble learning

Formally, these are
equivalent. Per-event models
are less complex, but there
may be practical reasons to
prefer one over the other

() GitHub.com/bnachman/Ensemblelearning
B. Nachman and J. Thaler in PRD 103 (2021) 116013, 2101.07263
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Estimating the Mutual Information
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Examples: Classification [top quarks] \
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Examples: Classification [top quarks] ;
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