
E Pluribus Unum Ex Machina
Learning from Many Collider Events at Once

Deep Convolutional Architectures for
Jet-Images at the Large Hadron Collider

Introduction
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new
and uncharted physics at unprecedented collision energies.

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million
channel detector captures snapshots of particle collisions occurring 40 million times per second.
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space.
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ)
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue.
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118],
enabling the connection between LHC physics event reconstruction and computer vision.. We
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often
done in Computer Vision, to account for non-discriminative difference in pixel intensities.

In our experiments, we build discriminants on top of Jet Images to distinguish between a
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully
Connected
ReLU Unit

ReLU Dropout ReLU Dropout
Local

Response
Normalization

W’→ WZ event

Convolutions
Convolved

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements
Our analysis shows that Deep Convolutional Networks significantly improve the classification of
new physics processes compared to state-of-the-art methods based on physics features,
enhancing the discovery potential of the LHC. More importantly, the improved performance
suggests that the deep convolutional network is capturing features and representations beyond
physics-motivated variables.

Concluding Remarks
We show that modern Deep Convolutional Architectures can significantly enhance the discovery
potential of the LHC for new particles and phenomena. We hope to both inspire future research
into Computer Vision-inspired techniques for particle discovery, and continue down this path
towards increased discovery potential for new physics.

Difference in average
image between signal

and background

Deep Convolutional Networks
Deep Learning — convolutional networks in particular — currently represent the state of the art in
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and
perform model selection. Below, we visualize a simple architecture used to great success.

We found that architectures with large filters captured the physics response with a higher level of
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based
structure that sheds light on phenomenological structures within jets.

Visualizing Learning
Below, we have the learned convolutional filters (left) and the difference in between the average
signal and background image after applying the learned convolutional filters (right). This novel
difference-visualization technique helps understand what the network learns.

2D
Convolutions
to Jet Images

Understanding Improvements
Since the selection of physics-driven variables is driven by physical understanding, we want to be
sure that the representations we learn are more than simple recombinations of basic physical
variables. We introduce a new method to test this — we derive sample weights to apply such that

meaning that physical variables have no discrimination power. Then, we apply our learned
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated
discriminants — mass (top)
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of
the physics-related variables leads to a likelihood
performance equivalent to a random guess, but
the Deep Convolutional Network retains some
discriminative power. This indicates that the deep
network learns beyond theory-driven variables —
we hypothesize these may have to do with
density, shape, spread, and other spatially driven
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory, cStanford University, Department of Statistics

Benjamin Nachman
Lawrence Berkeley National Laboratory

bpnachman.com @bpnachman bnachman
bpnachman@lbl.gov

July 27, 2021

CMS Machine
Learning Town Hall

~ work with Jesse Thaler in PRD 103 (2021) 116013, 2101.07263 ~

http://cern.ch/bnachman

2Outline

• The core idea of this paper: you can’t (formally) gain by
learning with multiple events at once, f = f(x1, …, xN).

➡ This may be obvious to some of you and it may
violate the intuition of others.

➡ There may be practical situations where it is better to
train a classifier/regressor to process multiple events
at once, especially if training can be made simpler.

• In addition to explaining the core idea, I’ll describe some
other statistical facts that may be useful for classification,
inference, etc.

3The statistical structure of collisions

p({x1, . . . , xN} |θ) = ∏N
i=1 p(xi |θ)

To a very good approximation, collisions are independent:

xi are features to represent events
(could be low-level or high-level)

4The statistical structure of collisions

p({x1, . . . , xN} |θA)
p({x1, . . . , xN} |θB)

= ∏N
i=1

p(xi |θA)
p(xi |θB)

This means that the per-ensemble likelihood ratio can be
written as a product of per-event likelihood ratios.

This explains the informational equivalence of an optimal
per-ensemble learning (left) and a per-event learning (right)

Collections of N events have more info than single events, but a
per-event classifier applied N times has access to the same info.

5Brief review: per-instance classification

L[f] = − ∫ dx (p(x |θA)A(f(x)) + p(x |θB)B(f(x)))

We start with a loss function(al):

It is often useful to consider the continuum limit:

L[f] = − ∑i∈class A A(f(xi)) − ∑i∈class B B(f(xi))

Typically, A = log and B = 1-log

6Brief review: per-instance classification

Functional optimization shows that

− B′ (f(x))
A′ (f(x)) =

p(x |θA)
p(x |θB)

optimal
classifier

This means that there are many loss functionals (defined
by A and B) which result in an optimal classifier.

in particular, as long as B’(f)/A’(f) is a monotonic
rescaling of f and the overall loss is convex

7Brief review: per-instance classification

Since it simplifies much of the notation, consider
the “maximum likelihood classifier” (MLC) loss*

with A(f) = log(f) and B(f) = 1-f. Then,

− B′ (f(x))
A′ (f(x)) =

p(x |θA)
p(x |θB)

optimal
classifier

argminf LMLC[f] =
p(x |θA)
p(x |θB)

*This was introduced in its exponential form by R. T. D’Agnolo and A. Wulzer in PRD 99 (2019) 015014, 1806.02350

The loss value itself is the KL
divergence between the
conditional probabilities

8Per-ensemble classification

One could insert N events instead of one into the MLC loss:

LMLC[fN] = − ∫ dNx (⃗x |θA)log fN(⃗x) + p(⃗x |θB)(1 − fN(⃗x)))

argminfNLMLC[fN] =
p(⃗x |θA)

p(⃗x |θB)

Unsurprisingly,

9Per-ensemble classification

However, we can also build this up from one event:

argminfNLMLC[fN] =
p(⃗x |θA)

p(⃗x |θB)

f1→N ≡ ∏N
i=1 f1(xi) →

p(⃗x |θA)

p(⃗x |θB)

If x is k-dimensional, then f1 only requires samples of
dimension k while fN requires samples of dimension kN

10Per-ensemble classification

f1→N ≡ ∏N
i=1 f1(xi) →

p(⃗x |θA)

p(⃗x |θB)

It is also possible to go in the converse direction:

f̃N(⃗x) ≡ ∏N
i=1 fN→1(xi)

Where the entire righthand side is used to minimize
the ensemble MLC loss. This construction is at the
core of set-based neural networks like Deep Sets.

M. Zaheer et al. NeurlPS 2017

11Examples: Classification 7

(a) (b)

FIG. 1. Classification in the two Gaussian example. (a) A histogram of the Gaussian random variable X, for the “signal”
(x0 = 0.1) and background (x0 = ≠0.1). (b) ROC curves for various binary classifiers. From the single-event classifier f1, we can
construct a multi-event classifier f1æ10 that matches the performance of a classifier trained on 10 events simultaneously (f10).

network, we train for up to 1000 epochs with a batch size
of 10%, which means that the number of batches per epoch
is the same, as is the number of events considered per
batch. The training is stopped if the validation loss does
not decrease for 20 consecutive epochs (early stopping).
For the ensemble network, we take N = 10. We did not
do any detailed hyperparameter optimization for these
studies.

In Fig. 1b, we show the performance of the resulting
classifiers f1 and f10. We checked that the f1 classifier
parametrized by a neural network has essentially the same
performance as an analytic function derived by taking the
ratio of Gaussian probability densities, which means that
the neural network f1 is nearly optimal. As expected,
the per-instance classifier f1 has a worse receiver oper-
ating characteristic (ROC) curve than the per-ensemble
classifier f10. This is not a relevant comparison, however,
because the two are solving di�erent classification tasks
(i.e. classifying individual events as coming from signal
or background versus classifying an ensemble of N = 10
events as all coming from signal or background). With
Eq. (13), we can use f1 to build a 10-instance classifier
f1æ10, whose ROC curve is nearly identical to f10, if not
even slightly better. Thus, as expected from Eq. (2), all of
the information in the 10-instance classifier is contained
in the per-instance classifier.

2. Dijet Resonance Search

We now consider an example from collider physics, mo-
tivated by a search for new beyond-the-Standard-Model

(BSM) particles in a dijet final state. The simulations
used for this study were produced for the LHC Olympics
2020 community challenge [51]. The background pro-
cess involves generic quantum chromodynamics (QCD)
dijet events with a requirement of at least one such jet
with transverse momentum pT > 1.3 TeV. The signal
process involves the production of a hypothetical new
resonance W Õ with mass mW Õ = 3.5 TeV, which decays
via W Õ

æ XY to two hypothetical particles X and Y of
masses 500 GeV and 100 GeV, respectively. Each of the X
and Y particles decays promptly into pairs of quarks. Due
to the mass hierarchy between the W Õ boson and its decay
products, the final state is characterized by two large-
radius jets with two-prong substructure. The background
and signal are generated using Pythia 8.219 [52, 53]. A
detector simulation is performed with Delphes 3.4.1 [54–
56] using the default CMS detector card. Particle flow
objects are used as inputs to jet clustering, implemented
with FastJet 3.2.1 [57, 58] and the anti-kt algorithm [59]
using R = 1.0 for the radius parameter. Events are re-
quired to have a reconstructed dijet mass within the range
mJJ < [3.3, 3.7] GeV.

Four features are used to train our classifiers: the in-
variant mass of the lighter jet, the mass di�erence of the
leading two jets, and the N -subjettiess ratios ·21 [60, 61]
of the leading two jets. The observable ·21 quantifies
the degree to which a jet is characterized by two subjets
or one subjet, with smaller values indicating two-prong
substructure. The mass features are recorded in units of
TeV so that they are numerically O(1). Histograms of
the four features for signal and background are shown in
Figs. 2a and 2b. The signal jet masses are localized at

[Gaussian]

7

(a) (b)

FIG. 1. Classification in the two Gaussian example. (a) A histogram of the Gaussian random variable X, for the “signal”
(x0 = 0.1) and background (x0 = ≠0.1). (b) ROC curves for various binary classifiers. From the single-event classifier f1, we can
construct a multi-event classifier f1æ10 that matches the performance of a classifier trained on 10 events simultaneously (f10).

network, we train for up to 1000 epochs with a batch size
of 10%, which means that the number of batches per epoch
is the same, as is the number of events considered per
batch. The training is stopped if the validation loss does
not decrease for 20 consecutive epochs (early stopping).
For the ensemble network, we take N = 10. We did not
do any detailed hyperparameter optimization for these
studies.

In Fig. 1b, we show the performance of the resulting
classifiers f1 and f10. We checked that the f1 classifier
parametrized by a neural network has essentially the same
performance as an analytic function derived by taking the
ratio of Gaussian probability densities, which means that
the neural network f1 is nearly optimal. As expected,
the per-instance classifier f1 has a worse receiver oper-
ating characteristic (ROC) curve than the per-ensemble
classifier f10. This is not a relevant comparison, however,
because the two are solving di�erent classification tasks
(i.e. classifying individual events as coming from signal
or background versus classifying an ensemble of N = 10
events as all coming from signal or background). With
Eq. (13), we can use f1 to build a 10-instance classifier
f1æ10, whose ROC curve is nearly identical to f10, if not
even slightly better. Thus, as expected from Eq. (2), all of
the information in the 10-instance classifier is contained
in the per-instance classifier.

2. Dijet Resonance Search

We now consider an example from collider physics, mo-
tivated by a search for new beyond-the-Standard-Model

(BSM) particles in a dijet final state. The simulations
used for this study were produced for the LHC Olympics
2020 community challenge [51]. The background pro-
cess involves generic quantum chromodynamics (QCD)
dijet events with a requirement of at least one such jet
with transverse momentum pT > 1.3 TeV. The signal
process involves the production of a hypothetical new
resonance W Õ with mass mW Õ = 3.5 TeV, which decays
via W Õ

æ XY to two hypothetical particles X and Y of
masses 500 GeV and 100 GeV, respectively. Each of the X
and Y particles decays promptly into pairs of quarks. Due
to the mass hierarchy between the W Õ boson and its decay
products, the final state is characterized by two large-
radius jets with two-prong substructure. The background
and signal are generated using Pythia 8.219 [52, 53]. A
detector simulation is performed with Delphes 3.4.1 [54–
56] using the default CMS detector card. Particle flow
objects are used as inputs to jet clustering, implemented
with FastJet 3.2.1 [57, 58] and the anti-kt algorithm [59]
using R = 1.0 for the radius parameter. Events are re-
quired to have a reconstructed dijet mass within the range
mJJ < [3.3, 3.7] GeV.

Four features are used to train our classifiers: the in-
variant mass of the lighter jet, the mass di�erence of the
leading two jets, and the N -subjettiess ratios ·21 [60, 61]
of the leading two jets. The observable ·21 quantifies
the degree to which a jet is characterized by two subjets
or one subjet, with smaller values indicating two-prong
substructure. The mass features are recorded in units of
TeV so that they are numerically O(1). Histograms of
the four features for signal and background are shown in
Figs. 2a and 2b. The signal jet masses are localized at

per-event classifier
per-(10-event) classifier
per-event classifier applied 10 times

12Examples: Classification 7

(a) (b)

FIG. 1. Classification in the two Gaussian example. (a) A histogram of the Gaussian random variable X, for the “signal”
(x0 = 0.1) and background (x0 = ≠0.1). (b) ROC curves for various binary classifiers. From the single-event classifier f1, we can
construct a multi-event classifier f1æ10 that matches the performance of a classifier trained on 10 events simultaneously (f10).

network, we train for up to 1000 epochs with a batch size
of 10%, which means that the number of batches per epoch
is the same, as is the number of events considered per
batch. The training is stopped if the validation loss does
not decrease for 20 consecutive epochs (early stopping).
For the ensemble network, we take N = 10. We did not
do any detailed hyperparameter optimization for these
studies.

In Fig. 1b, we show the performance of the resulting
classifiers f1 and f10. We checked that the f1 classifier
parametrized by a neural network has essentially the same
performance as an analytic function derived by taking the
ratio of Gaussian probability densities, which means that
the neural network f1 is nearly optimal. As expected,
the per-instance classifier f1 has a worse receiver oper-
ating characteristic (ROC) curve than the per-ensemble
classifier f10. This is not a relevant comparison, however,
because the two are solving di�erent classification tasks
(i.e. classifying individual events as coming from signal
or background versus classifying an ensemble of N = 10
events as all coming from signal or background). With
Eq. (13), we can use f1 to build a 10-instance classifier
f1æ10, whose ROC curve is nearly identical to f10, if not
even slightly better. Thus, as expected from Eq. (2), all of
the information in the 10-instance classifier is contained
in the per-instance classifier.

2. Dijet Resonance Search

We now consider an example from collider physics, mo-
tivated by a search for new beyond-the-Standard-Model

(BSM) particles in a dijet final state. The simulations
used for this study were produced for the LHC Olympics
2020 community challenge [51]. The background pro-
cess involves generic quantum chromodynamics (QCD)
dijet events with a requirement of at least one such jet
with transverse momentum pT > 1.3 TeV. The signal
process involves the production of a hypothetical new
resonance W Õ with mass mW Õ = 3.5 TeV, which decays
via W Õ

æ XY to two hypothetical particles X and Y of
masses 500 GeV and 100 GeV, respectively. Each of the X
and Y particles decays promptly into pairs of quarks. Due
to the mass hierarchy between the W Õ boson and its decay
products, the final state is characterized by two large-
radius jets with two-prong substructure. The background
and signal are generated using Pythia 8.219 [52, 53]. A
detector simulation is performed with Delphes 3.4.1 [54–
56] using the default CMS detector card. Particle flow
objects are used as inputs to jet clustering, implemented
with FastJet 3.2.1 [57, 58] and the anti-kt algorithm [59]
using R = 1.0 for the radius parameter. Events are re-
quired to have a reconstructed dijet mass within the range
mJJ < [3.3, 3.7] GeV.

Four features are used to train our classifiers: the in-
variant mass of the lighter jet, the mass di�erence of the
leading two jets, and the N -subjettiess ratios ·21 [60, 61]
of the leading two jets. The observable ·21 quantifies
the degree to which a jet is characterized by two subjets
or one subjet, with smaller values indicating two-prong
substructure. The mass features are recorded in units of
TeV so that they are numerically O(1). Histograms of
the four features for signal and background are shown in
Figs. 2a and 2b. The signal jet masses are localized at

[Gaussian]
11

FIG. 5. Revisiting the ROC curves for the two Gaussian
example from Fig. 1b. The multi-event classifier f̃10 with the
restricted functional form in Eq. (32) has the same performance
as f10 with no restrictions. Using f̃10, we can construct a single-
event classifier f̃10æ1 with the same performance as f1 trained
directly.

the f1 network trained independently on single events, as
expected from the gradient issue discussed in Sec. II C.
While we found no benefit to extracting a single-event
classifier from a multi-event classifier, it is satisfying to
see these IID-derived theoretical predictions borne out in
these empirical examples.

C. Comparison of Regression Strategies

We now consider the regression methods introduced
in Sec. II D. For classification, the mapping between
per-instance and per-ensemble information is relatively
straightforward. For regression, though, per-ensemble
regression is structurally dissimilar from per-instance re-
gression because of the need to integrate over priors on
the regression parameters. Nevertheless, we can perform
per-ensemble regression by first mapping the problem to
per-instance parametrized classification.

We compare three di�erent regression strategies for
our empirical studies. The first method is a maximum-
likelihood analysis, using the form in Eq. (24) based on
the single-event parametrized classifier in Eq. (23). The
second method is per-instance direct regression, using the
construction in Eqs. (28) and (29) based on the same
classifier as above. The third method is per-ensemble
direct regression, based on minimizing the mean squared
error loss in Eq. (27).

FIG. 6. Revisiting the ROC curves for the dijet resonance
search example in Fig. 2c. The set-based multi-event classifiers
f̃ set

3 and f set
3 have similar performance, but we can use the

former to construct a single-event classifier f3æ1. This con-
struction is not as e�ective as performing single-event training
directly (f1).

1. Gaussian Mean Example

Our first regression study is based on the same one-
dimensional Gaussian distributions as Sec. III A 1. The
prior distribution for the Gaussian means is taken to
be uniform with µ œ [≠0.5, 0.5], while the variance is
fixed at ‡ = 1. A training dataset is created from 100
examples each from 10,000 values of the Gaussian mean,
for a total of one million training data points. For the
reference sample p(x|◊0) needed to build the single-event
parametrized classifier f(x, µ) in Eq. (23), we create a
second dataset with one million examples drawn from a
standard normal distribution (i.e. µ = 0). To implement
the p(◊) term in the second line of Eq. (22), each example
xi from the reference dataset is assigned a random mean
value picked from the variable-mean dataset.

We train a parametrized neural network to distinguish
the variable-mean datasets from the reference dataset.
This network takes as input two features: one component
of x̨ and the random mean value µ. The architecture
consists of three hidden layers with (64, 128, 64) nodes per
layer and ReLU activation. The output layer has a single
node and sigmoid activation. Binary cross entropy is used
to train the classifier and Eq. (4) is used to convert it to
the likelihood ratio form f(x, µ). The model is trained
for 1000 epochs with early stopping and a batch size of
10% of the training statistics.

The same learned function f(x, µ) is used for both
the maximum likelihood analysis and per-instance direct
regression. For the maximum-likelihood analysis, the opti-

11

FIG. 5. Revisiting the ROC curves for the two Gaussian
example from Fig. 1b. The multi-event classifier f̃10 with the
restricted functional form in Eq. (32) has the same performance
as f10 with no restrictions. Using f̃10, we can construct a single-
event classifier f̃10æ1 with the same performance as f1 trained
directly.

the f1 network trained independently on single events, as
expected from the gradient issue discussed in Sec. II C.
While we found no benefit to extracting a single-event
classifier from a multi-event classifier, it is satisfying to
see these IID-derived theoretical predictions borne out in
these empirical examples.

C. Comparison of Regression Strategies

We now consider the regression methods introduced
in Sec. II D. For classification, the mapping between
per-instance and per-ensemble information is relatively
straightforward. For regression, though, per-ensemble
regression is structurally dissimilar from per-instance re-
gression because of the need to integrate over priors on
the regression parameters. Nevertheless, we can perform
per-ensemble regression by first mapping the problem to
per-instance parametrized classification.

We compare three di�erent regression strategies for
our empirical studies. The first method is a maximum-
likelihood analysis, using the form in Eq. (24) based on
the single-event parametrized classifier in Eq. (23). The
second method is per-instance direct regression, using the
construction in Eqs. (28) and (29) based on the same
classifier as above. The third method is per-ensemble
direct regression, based on minimizing the mean squared
error loss in Eq. (27).

FIG. 6. Revisiting the ROC curves for the dijet resonance
search example in Fig. 2c. The set-based multi-event classifiers
f̃ set

3 and f set
3 have similar performance, but we can use the

former to construct a single-event classifier f3æ1. This con-
struction is not as e�ective as performing single-event training
directly (f1).

1. Gaussian Mean Example

Our first regression study is based on the same one-
dimensional Gaussian distributions as Sec. III A 1. The
prior distribution for the Gaussian means is taken to
be uniform with µ œ [≠0.5, 0.5], while the variance is
fixed at ‡ = 1. A training dataset is created from 100
examples each from 10,000 values of the Gaussian mean,
for a total of one million training data points. For the
reference sample p(x|◊0) needed to build the single-event
parametrized classifier f(x, µ) in Eq. (23), we create a
second dataset with one million examples drawn from a
standard normal distribution (i.e. µ = 0). To implement
the p(◊) term in the second line of Eq. (22), each example
xi from the reference dataset is assigned a random mean
value picked from the variable-mean dataset.

We train a parametrized neural network to distinguish
the variable-mean datasets from the reference dataset.
This network takes as input two features: one component
of x̨ and the random mean value µ. The architecture
consists of three hidden layers with (64, 128, 64) nodes per
layer and ReLU activation. The output layer has a single
node and sigmoid activation. Binary cross entropy is used
to train the classifier and Eq. (4) is used to convert it to
the likelihood ratio form f(x, µ). The model is trained
for 1000 epochs with early stopping and a batch size of
10% of the training statistics.

The same learned function f(x, µ) is used for both
the maximum likelihood analysis and per-instance direct
regression. For the maximum-likelihood analysis, the opti-

Train a particle flow network F(Φ(x)) with
latent space dimension 1 and non-trainable F

P. Komiske, E. Metodiev, J. Thaler, JHEP 01 (2019) 121, 1810.05165

F(⃗x) =
exp(∑N

i=1 Φ(xi))
1 + exp(∑N

i=1 Φ(xi))

13Examples: Classification

(a)

[Gaussian]
11

FIG. 5. Revisiting the ROC curves for the two Gaussian
example from Fig. 1b. The multi-event classifier f̃10 with the
restricted functional form in Eq. (32) has the same performance
as f10 with no restrictions. Using f̃10, we can construct a single-
event classifier f̃10æ1 with the same performance as f1 trained
directly.

the f1 network trained independently on single events, as
expected from the gradient issue discussed in Sec. II C.
While we found no benefit to extracting a single-event
classifier from a multi-event classifier, it is satisfying to
see these IID-derived theoretical predictions borne out in
these empirical examples.

C. Comparison of Regression Strategies

We now consider the regression methods introduced
in Sec. II D. For classification, the mapping between
per-instance and per-ensemble information is relatively
straightforward. For regression, though, per-ensemble
regression is structurally dissimilar from per-instance re-
gression because of the need to integrate over priors on
the regression parameters. Nevertheless, we can perform
per-ensemble regression by first mapping the problem to
per-instance parametrized classification.

We compare three di�erent regression strategies for
our empirical studies. The first method is a maximum-
likelihood analysis, using the form in Eq. (24) based on
the single-event parametrized classifier in Eq. (23). The
second method is per-instance direct regression, using the
construction in Eqs. (28) and (29) based on the same
classifier as above. The third method is per-ensemble
direct regression, based on minimizing the mean squared
error loss in Eq. (27).

FIG. 6. Revisiting the ROC curves for the dijet resonance
search example in Fig. 2c. The set-based multi-event classifiers
f̃ set

3 and f set
3 have similar performance, but we can use the

former to construct a single-event classifier f3æ1. This con-
struction is not as e�ective as performing single-event training
directly (f1).

1. Gaussian Mean Example

Our first regression study is based on the same one-
dimensional Gaussian distributions as Sec. III A 1. The
prior distribution for the Gaussian means is taken to
be uniform with µ œ [≠0.5, 0.5], while the variance is
fixed at ‡ = 1. A training dataset is created from 100
examples each from 10,000 values of the Gaussian mean,
for a total of one million training data points. For the
reference sample p(x|◊0) needed to build the single-event
parametrized classifier f(x, µ) in Eq. (23), we create a
second dataset with one million examples drawn from a
standard normal distribution (i.e. µ = 0). To implement
the p(◊) term in the second line of Eq. (22), each example
xi from the reference dataset is assigned a random mean
value picked from the variable-mean dataset.

We train a parametrized neural network to distinguish
the variable-mean datasets from the reference dataset.
This network takes as input two features: one component
of x̨ and the random mean value µ. The architecture
consists of three hidden layers with (64, 128, 64) nodes per
layer and ReLU activation. The output layer has a single
node and sigmoid activation. Binary cross entropy is used
to train the classifier and Eq. (4) is used to convert it to
the likelihood ratio form f(x, µ). The model is trained
for 1000 epochs with early stopping and a batch size of
10% of the training statistics.

The same learned function f(x, µ) is used for both
the maximum likelihood analysis and per-instance direct
regression. For the maximum-likelihood analysis, the opti-

11

FIG. 5. Revisiting the ROC curves for the two Gaussian
example from Fig. 1b. The multi-event classifier f̃10 with the
restricted functional form in Eq. (32) has the same performance
as f10 with no restrictions. Using f̃10, we can construct a single-
event classifier f̃10æ1 with the same performance as f1 trained
directly.

the f1 network trained independently on single events, as
expected from the gradient issue discussed in Sec. II C.
While we found no benefit to extracting a single-event
classifier from a multi-event classifier, it is satisfying to
see these IID-derived theoretical predictions borne out in
these empirical examples.

C. Comparison of Regression Strategies

We now consider the regression methods introduced
in Sec. II D. For classification, the mapping between
per-instance and per-ensemble information is relatively
straightforward. For regression, though, per-ensemble
regression is structurally dissimilar from per-instance re-
gression because of the need to integrate over priors on
the regression parameters. Nevertheless, we can perform
per-ensemble regression by first mapping the problem to
per-instance parametrized classification.

We compare three di�erent regression strategies for
our empirical studies. The first method is a maximum-
likelihood analysis, using the form in Eq. (24) based on
the single-event parametrized classifier in Eq. (23). The
second method is per-instance direct regression, using the
construction in Eqs. (28) and (29) based on the same
classifier as above. The third method is per-ensemble
direct regression, based on minimizing the mean squared
error loss in Eq. (27).

FIG. 6. Revisiting the ROC curves for the dijet resonance
search example in Fig. 2c. The set-based multi-event classifiers
f̃ set

3 and f set
3 have similar performance, but we can use the

former to construct a single-event classifier f3æ1. This con-
struction is not as e�ective as performing single-event training
directly (f1).

1. Gaussian Mean Example

Our first regression study is based on the same one-
dimensional Gaussian distributions as Sec. III A 1. The
prior distribution for the Gaussian means is taken to
be uniform with µ œ [≠0.5, 0.5], while the variance is
fixed at ‡ = 1. A training dataset is created from 100
examples each from 10,000 values of the Gaussian mean,
for a total of one million training data points. For the
reference sample p(x|◊0) needed to build the single-event
parametrized classifier f(x, µ) in Eq. (23), we create a
second dataset with one million examples drawn from a
standard normal distribution (i.e. µ = 0). To implement
the p(◊) term in the second line of Eq. (22), each example
xi from the reference dataset is assigned a random mean
value picked from the variable-mean dataset.

We train a parametrized neural network to distinguish
the variable-mean datasets from the reference dataset.
This network takes as input two features: one component
of x̨ and the random mean value µ. The architecture
consists of three hidden layers with (64, 128, 64) nodes per
layer and ReLU activation. The output layer has a single
node and sigmoid activation. Binary cross entropy is used
to train the classifier and Eq. (4) is used to convert it to
the likelihood ratio form f(x, µ). The model is trained
for 1000 epochs with early stopping and a batch size of
10% of the training statistics.

The same learned function f(x, µ) is used for both
the maximum likelihood analysis and per-instance direct
regression. For the maximum-likelihood analysis, the opti-

Train a particle flow network F(Φ(x)) with
latent space dimension 1 and non-trainable F

P. Komiske, E. Metodiev, J. Thaler, JHEP 01 (2019) 121, 1810.05165

F(⃗x) =
exp(∑N

i=1 Φ(xi))
1 + exp(∑N

i=1 Φ(xi))

In fact, we have analytic/
empirical evidence that

training f1 is more efficient
than training f10→1

14Examples: Classification [BSM]
8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

15Examples: Classification [BSM]
8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

per-event classifier

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

per-event classifier
applied 3 times

per-3-event classifier

per-3-event classifier,
events sorted by mJ1

per-3-event classifier,
using PFN across events

16Examples: Classification [BSM]

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

per-event classifier

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

8

(a)

(b) (c)

FIG. 2. Classification in the dijet resonance search example. (a,b) Histograms of the four jet features for the signal (W Õ æ XY)
and background (QCD dijet) processes. (c) ROC curves for various binary classifiers. The multi-event classifier f1æ3 (built from
f1) outperforms three classifiers trained on triplets of events: f list

3 with randomly ordered inputs, f sort
3 with sorted inputs, and

f set
3 based on the deep sets/PFN strategy in Eq. (31) with built-in permutation invariance.

the X and Y masses and the ·21 observables are shifted
towards lower values, indicating that the jets have two-
prong substructure.

We train a per-instance classifier (f1) and a per-
ensemble classifier (f3) using the same tools as for the
Gaussian example above, again using binary cross entropy
for the loss function. Because signal and background are
so well separated in this example, we restrict our attention
to N = 3 to avoid saturating the performance. Note that
this is an artificially constructed classification problem,
since in a more realistic context one would be trying to
estimate the signal fraction in an event ensemble, not
classify triplets of events as all coming from signal or
background.

For f1, the neural network architecture is the same
as Ref. [18] with four hidden layers, each with 64 nodes
and ReLU activation, and an output layer with sigmoid
activation. For f3, the neural network involves 4 ◊ 3 = 12
inputs, and the penultimate hidden layer is adjusted to
have 128 nodes, yielding a marginal performance gain.
In both cases, about 100,000 events are used for testing
and training, with roughly balanced classes. All of the
networks are trained for up to 1000 epochs with the same
early stopping condition as in the Gaussian case and with
a batch size of 10%. Following Eq. (13), we construct a
tri-event classifier f1æ3 from f1.

The ROC curves for f3 and f1æ3 are shown in Fig. 2c,
with f1 also shown for completeness. Interestingly, the
f1æ3 classifier trained on single events significantly outper-
forms f3 trained on multiple events. There are a variety
of reasons for this, but one important deficiency of the f3
classifier is that it does not respect the permutation sym-

metry of its inputs. Because events are IID distributed,
there is no natural ordering of the events, but the fully
connected architecture we are using imposes an artificial
ordering. Inspired by Ref. [12], we can break the permu-
tation symmetry of the inputs by imposing a particular
order on the events. Specifically, we train a network f sort

3
where the triplet of events is sorted by their leading jet
mass. Using f sort

3 yields a small gain in performance seen
in Fig. 2, but not enough to close the gap with f1æ3.

A more powerful way to account for the permuta-
tion symmetry among events is to explicitly build a
permutation-invariant neural network architecture. For
this purpose, we use the deep sets approach [62]. In
the particle physics context, deep sets were first used to
construct particle flow networks (PFNs) [63], where the
inputs involve sets of particles. Here, we are interested in
sets of events, though we will still use the PFN code from
the https://energyflow.network/ package. Following
Refs. [62, 63], we decompose our set-based classifier as:

f set
N (x̨) = F

A
Nÿ

i=1
�(xi)

B
, (31)

where F : RL
æ [0, 1] and � : E æ RL are neural

networks that are simultaneously optimized. The network
� embeds single events xi into a L-dimensional latent
space. The sum operator in Eq. (31) guarantees that f set

N
is invariant under permutations x‡(i) for ‡ œ SN , the
permutation group acting on N elements. We use the
default parameters from the PFN code, with L = 128,
� having two hidden layers with 100 nodes each, and F
having three hidden nodes with 100 nodes each. The same

per-event classifier
applied 3 times

per-3-event classifier

per-3-event classifier,
events sorted by mJ1

per-3-event classifier,
using PFN across events

11

FIG. 5. Revisiting the ROC curves for the two Gaussian
example from Fig. 1b. The multi-event classifier f̃10 with the
restricted functional form in Eq. (32) has the same performance
as f10 with no restrictions. Using f̃10, we can construct a single-
event classifier f̃10æ1 with the same performance as f1 trained
directly.

the f1 network trained independently on single events, as
expected from the gradient issue discussed in Sec. II C.
While we found no benefit to extracting a single-event
classifier from a multi-event classifier, it is satisfying to
see these IID-derived theoretical predictions borne out in
these empirical examples.

C. Comparison of Regression Strategies

We now consider the regression methods introduced
in Sec. II D. For classification, the mapping between
per-instance and per-ensemble information is relatively
straightforward. For regression, though, per-ensemble
regression is structurally dissimilar from per-instance re-
gression because of the need to integrate over priors on
the regression parameters. Nevertheless, we can perform
per-ensemble regression by first mapping the problem to
per-instance parametrized classification.

We compare three di�erent regression strategies for
our empirical studies. The first method is a maximum-
likelihood analysis, using the form in Eq. (24) based on
the single-event parametrized classifier in Eq. (23). The
second method is per-instance direct regression, using the
construction in Eqs. (28) and (29) based on the same
classifier as above. The third method is per-ensemble
direct regression, based on minimizing the mean squared
error loss in Eq. (27).

FIG. 6. Revisiting the ROC curves for the dijet resonance
search example in Fig. 2c. The set-based multi-event classifiers
f̃ set

3 and f set
3 have similar performance, but we can use the

former to construct a single-event classifier f3æ1. This con-
struction is not as e�ective as performing single-event training
directly (f1).

1. Gaussian Mean Example

Our first regression study is based on the same one-
dimensional Gaussian distributions as Sec. III A 1. The
prior distribution for the Gaussian means is taken to
be uniform with µ œ [≠0.5, 0.5], while the variance is
fixed at ‡ = 1. A training dataset is created from 100
examples each from 10,000 values of the Gaussian mean,
for a total of one million training data points. For the
reference sample p(x|◊0) needed to build the single-event
parametrized classifier f(x, µ) in Eq. (23), we create a
second dataset with one million examples drawn from a
standard normal distribution (i.e. µ = 0). To implement
the p(◊) term in the second line of Eq. (22), each example
xi from the reference dataset is assigned a random mean
value picked from the variable-mean dataset.

We train a parametrized neural network to distinguish
the variable-mean datasets from the reference dataset.
This network takes as input two features: one component
of x̨ and the random mean value µ. The architecture
consists of three hidden layers with (64, 128, 64) nodes per
layer and ReLU activation. The output layer has a single
node and sigmoid activation. Binary cross entropy is used
to train the classifier and Eq. (4) is used to convert it to
the likelihood ratio form f(x, µ). The model is trained
for 1000 epochs with early stopping and a batch size of
10% of the training statistics.

The same learned function f(x, µ) is used for both
the maximum likelihood analysis and per-instance direct
regression. For the maximum-likelihood analysis, the opti-

11

FIG. 5. Revisiting the ROC curves for the two Gaussian
example from Fig. 1b. The multi-event classifier f̃10 with the
restricted functional form in Eq. (32) has the same performance
as f10 with no restrictions. Using f̃10, we can construct a single-
event classifier f̃10æ1 with the same performance as f1 trained
directly.

the f1 network trained independently on single events, as
expected from the gradient issue discussed in Sec. II C.
While we found no benefit to extracting a single-event
classifier from a multi-event classifier, it is satisfying to
see these IID-derived theoretical predictions borne out in
these empirical examples.

C. Comparison of Regression Strategies

We now consider the regression methods introduced
in Sec. II D. For classification, the mapping between
per-instance and per-ensemble information is relatively
straightforward. For regression, though, per-ensemble
regression is structurally dissimilar from per-instance re-
gression because of the need to integrate over priors on
the regression parameters. Nevertheless, we can perform
per-ensemble regression by first mapping the problem to
per-instance parametrized classification.

We compare three di�erent regression strategies for
our empirical studies. The first method is a maximum-
likelihood analysis, using the form in Eq. (24) based on
the single-event parametrized classifier in Eq. (23). The
second method is per-instance direct regression, using the
construction in Eqs. (28) and (29) based on the same
classifier as above. The third method is per-ensemble
direct regression, based on minimizing the mean squared
error loss in Eq. (27).

FIG. 6. Revisiting the ROC curves for the dijet resonance
search example in Fig. 2c. The set-based multi-event classifiers
f̃ set

3 and f set
3 have similar performance, but we can use the

former to construct a single-event classifier f3æ1. This con-
struction is not as e�ective as performing single-event training
directly (f1).

1. Gaussian Mean Example

Our first regression study is based on the same one-
dimensional Gaussian distributions as Sec. III A 1. The
prior distribution for the Gaussian means is taken to
be uniform with µ œ [≠0.5, 0.5], while the variance is
fixed at ‡ = 1. A training dataset is created from 100
examples each from 10,000 values of the Gaussian mean,
for a total of one million training data points. For the
reference sample p(x|◊0) needed to build the single-event
parametrized classifier f(x, µ) in Eq. (23), we create a
second dataset with one million examples drawn from a
standard normal distribution (i.e. µ = 0). To implement
the p(◊) term in the second line of Eq. (22), each example
xi from the reference dataset is assigned a random mean
value picked from the variable-mean dataset.

We train a parametrized neural network to distinguish
the variable-mean datasets from the reference dataset.
This network takes as input two features: one component
of x̨ and the random mean value µ. The architecture
consists of three hidden layers with (64, 128, 64) nodes per
layer and ReLU activation. The output layer has a single
node and sigmoid activation. Binary cross entropy is used
to train the classifier and Eq. (4) is used to convert it to
the likelihood ratio form f(x, µ). The model is trained
for 1000 epochs with early stopping and a batch size of
10% of the training statistics.

The same learned function f(x, µ) is used for both
the maximum likelihood analysis and per-instance direct
regression. For the maximum-likelihood analysis, the opti-

1D latent space,
Non-learnable F

17Per-ensemble regression I

Most common strategy is maximum likelihood:

θML = argmaxθp(⃗x |θ)

(see paper for other examples beyond regression,
e.g. estimating the mutual information)

18Per-ensemble regression I

Most common strategy is maximum likelihood:

θML = argmaxθp(⃗x |θ)

One way of doing this would be to train a
parameterized classifier using the MLC loss

K. Cranmer, J. Pavez, G. Louppe, 1506.02169; P. Baldi et al. EPJC 76 (2016) 235, 1601.07913

f(x, θ) = p(x |θ)
p(x |θ0)

→ θML = argminθ {−∑N
i=1 log f(xi, θ)}

fixed reference

19Per-ensemble regression II

f(x, θ) = p(x |θ)
p(x |θ0)

→ θML = argminθ {−∑N
i=1 log f(xi, θ)}

This requires two steps (amortized). Can we do it in one step?

Step 1 Step 2

argmaxθ {minf LMLC[f]} = θML

(see paper for derivation)

This does it all in one step, but does
require a minimax optimization

20Per-ensemble regression III

You may also ask, why not directly regress θ from N events?

LMSE[gN] = − ∫ dNx p(⃗x , θ)(gN(⃗x) − θ)2

MSE = mean squared error

This is prior-dependent, but it is well-known that formally:

gN(⃗x) = ⟨θ | ⃗x ⟩

21Per-ensemble regression III

gN(⃗x) = ⟨θ | ⃗x ⟩

gN(⃗x) = ∫ dθ θ p(θ | ⃗x)

= ∫ dθ θ
p(⃗x |θ) p(θ)

p(⃗x)

= ∫ dθ θ

p(⃗x |θ)
p(⃗x |θ0)

p(θ)

∫ dθ′

p(⃗x |θ′)
p(⃗x |θ0)

p(θ′)
= ∫ dθ θ

fN(⃗x , θ) p(θ)
∫ dθ′ fN(⃗x , θ′) p(θ′)

i.e. this is still secretly per-event classification !

22Examples: Regression [Gaussian] 12

FIG. 7. Comparison of regression methods with the Gaussian
example, with the predicted value of the mean plotted against
the true value of the mean. The regression involves analyzing
100 instances drawn from the same Gaussian distribution.
Bands are the standard deviation of the predictions over 10,000
generated samples. The per-instance direct regression uses
single-event training, yet achieves comparable performance
to per-ensemble direct regression that processes 100 events
simultaneously.

mization in Eq. (24) is performed over a fixed grid with 20
evenly spaced values in µ œ [≠0.5, 0.5]. For per-instance
direct regression, the function fN (x̨, µ) in Eq. (29) is con-
structed by taking a product of f(x, µ) outputs over all
100 examples in a given ensemble data point x̨. The inte-
grals in Eqs. (28) and (29) are approximated by evaluating
fN (x̨, µ) at 20 evenly spaced µ values between ≠0.5 and
0.5 and then adding their values; this is possible because
the prior is uniform.

The per-ensemble direct regression approach uses a
neural network gN that takes as input 100 values (i.e. all
of x̨) and predicts a single mean value. This network has
the same architecture as f(x, µ), except it directly takes
as input x̨ and has linear (instead of a sigmoid) activation
for the output layer, since the predicted mean can be
both positive or negative. It is trained to minimize the
mean squared error loss in Eq. (27).

In Fig. 7, we see that all three approaches give nearly
the same results in terms of bias and variance. Strictly
speaking, maximum likelihood and direct regression are
di�erent tasks so their behavior could be di�erent. For
per-instance and per-ensemble direct regression, they are
constructed to yield the same asymptotic behavior, but
there will be di�erences due to, e.g., the finite approxima-
tions to the integrals. Note that maximum likelihood and
per-instance direct regression only use neural networks
that process per-instance inputs; information about the
rest of the events is used only through the training proce-

dure. Thus, we have empirical evidence that per-ensemble
regression can be accomplished via per-instance training.

2. Top Quark Mass Measurement

As a physics example of regression, we consider extract-
ing the top quark mass. Here, the top quark mass is the
regression target and the setup is similar to the Gaussian
example above. We use the same event generation as
Sec. III A 3, but now with top quark mass parameters
sampled uniformly at random in mt œ [170, 180] GeV.
As with the Gaussian example, a variable-mass dataset
is created. In this case, we have 100 events for each of
100,000 sampled top quark mass values. The reference
sample uses a top quark mass of 172.5 GeV. Due to event
selection e�ects, the actual number of events for each top
quark mass value varies from set-to-set, with a mean of
about 40 events. Because this event selection has a slight
top quark mass dependence, this yields an e�ective non-
uniform prior on mt, which we account for when assigning
dummy mass values to the reference sample.

The parametrized classifier now takes five inputs:
the four mass features from Sec. III A 3 (mb1µ‹ , mb2µ‹ ,
mb1j1j2 , and mb2j1j2) plus the top quark mass used for
event generation. The neural network has three hidden
layers with 50 nodes per layer and ReLU activation, and
a single node output layer with sigmoid activation. We
train 100 models and take the median as the classifier
output, using Eq. (4) to convert it to the likelihood ratio
f(x, mt). Each model is trained for 1000 epochs with
early stopping with a patience of 20 epochs and a batch
size of 0.1%. To test the fidelity of the training, we ex-
tract the estimated likelihood ratio of mt = 175 GeV over
mt = 172.5 GeV and use it to reweight the 172.5 GeV sam-
ple. From Fig. 3a, we see that we achieve good reweighting
performance despite the relatively limited training data.

The maximum likelihood analysis is performed by scan-
ning the learned log likelihood estimate over a fixed grid
with 100 uniformly spaced steps in mt œ [170, 180] GeV.
In Fig. 8a, we show this scan where the target data comes
from the high statistics 172.5 GeV and 175 GeV sam-
ples from Sec. III A 3. As desired, the minimum of the
parabolic shapes are near the input top quark masses.

For the per-instance direct regression, we follow the
same strategy as in the Gaussian case to convert f(x, mt)
into an estimate of E[mt|x̨]. The integrals in Eqs. (28)
and (29) are approximated by sampling 50 random top
quark masses per set of 100 following the probability
density from the training dataset. Because 40 events
are insu�cient to make a precision measurement of the
top quark mass, we find a noticeable bias between the
estimated and true top mass values, which is exacerbated
by edge e�ects at the ends of the training range. For this
reason, we do not show a direct analog to Fig. 7, though
this bias could be overcome with much larger training
datasets with many more than 100 examples per mass
value.

7

(a) (b)

FIG. 1. Classification in the two Gaussian example. (a) A histogram of the Gaussian random variable X, for the “signal”
(x0 = 0.1) and background (x0 = ≠0.1). (b) ROC curves for various binary classifiers. From the single-event classifier f1, we can
construct a multi-event classifier f1æ10 that matches the performance of a classifier trained on 10 events simultaneously (f10).

network, we train for up to 1000 epochs with a batch size
of 10%, which means that the number of batches per epoch
is the same, as is the number of events considered per
batch. The training is stopped if the validation loss does
not decrease for 20 consecutive epochs (early stopping).
For the ensemble network, we take N = 10. We did not
do any detailed hyperparameter optimization for these
studies.

In Fig. 1b, we show the performance of the resulting
classifiers f1 and f10. We checked that the f1 classifier
parametrized by a neural network has essentially the same
performance as an analytic function derived by taking the
ratio of Gaussian probability densities, which means that
the neural network f1 is nearly optimal. As expected,
the per-instance classifier f1 has a worse receiver oper-
ating characteristic (ROC) curve than the per-ensemble
classifier f10. This is not a relevant comparison, however,
because the two are solving di�erent classification tasks
(i.e. classifying individual events as coming from signal
or background versus classifying an ensemble of N = 10
events as all coming from signal or background). With
Eq. (13), we can use f1 to build a 10-instance classifier
f1æ10, whose ROC curve is nearly identical to f10, if not
even slightly better. Thus, as expected from Eq. (2), all of
the information in the 10-instance classifier is contained
in the per-instance classifier.

2. Dijet Resonance Search

We now consider an example from collider physics, mo-
tivated by a search for new beyond-the-Standard-Model

(BSM) particles in a dijet final state. The simulations
used for this study were produced for the LHC Olympics
2020 community challenge [51]. The background pro-
cess involves generic quantum chromodynamics (QCD)
dijet events with a requirement of at least one such jet
with transverse momentum pT > 1.3 TeV. The signal
process involves the production of a hypothetical new
resonance W Õ with mass mW Õ = 3.5 TeV, which decays
via W Õ

æ XY to two hypothetical particles X and Y of
masses 500 GeV and 100 GeV, respectively. Each of the X
and Y particles decays promptly into pairs of quarks. Due
to the mass hierarchy between the W Õ boson and its decay
products, the final state is characterized by two large-
radius jets with two-prong substructure. The background
and signal are generated using Pythia 8.219 [52, 53]. A
detector simulation is performed with Delphes 3.4.1 [54–
56] using the default CMS detector card. Particle flow
objects are used as inputs to jet clustering, implemented
with FastJet 3.2.1 [57, 58] and the anti-kt algorithm [59]
using R = 1.0 for the radius parameter. Events are re-
quired to have a reconstructed dijet mass within the range
mJJ < [3.3, 3.7] GeV.

Four features are used to train our classifiers: the in-
variant mass of the lighter jet, the mass di�erence of the
leading two jets, and the N -subjettiess ratios ·21 [60, 61]
of the leading two jets. The observable ·21 quantifies
the degree to which a jet is characterized by two subjets
or one subjet, with smaller values indicating two-prong
substructure. The mass features are recorded in units of
TeV so that they are numerically O(1). Histograms of
the four features for signal and background are shown in
Figs. 2a and 2b. The signal jet masses are localized at

23Examples: Regression [top quarks]
13

(a) (b)

FIG. 8. Regression in the top quark mass example. (a) An estimate of the log likelihood for samples generated with 172.5 and
175 GeV top quark masses. The vertical axis has been shifted such that the minimum value is at zero. Note that the axis
represents the average log likelihood which is a factor of Nevents di�erent from the total log likelihood. (b) Correlation between
the per-instance predicted mass and the per-ensemble predicted mass in the context of direct regression. The per-ensemble mass
values are put in bins of 0.1 GeV width, and the bands represent the standard deviation of the per-instance mass values in each
bin.

For the per-ensemble direct regression, we use the deep
sets approach in Eq. (31) to handle the permutation-
invariance of the inputs. This approach is also well
suited to handle the large variation in the number of
events in each set due to the event selection e�ect. We
again use PFNs for our practical implementation. We
use the default PFN hyperparameters from the https:
//energyflow.network/ package, except we use linear
activation in the output layer and the mean squared er-
ror loss function. We found that it was important for
the model accuracy to standardize both the inputs and
outputs of the network. Note that this is a di�erent per-
ensemble direct regression setup than used in Ref. [12],
which found excellent performance using linear regression
on sorted inputs.

In Fig. 8b, we compare the output of per-ensemble
direct regression to the output of per-instance direct re-
gression. We find a very strong correlation between these
two very di�erent approaches to computing the same
quantity E[mt|x̨]. The band in Fig. 8b is the standard
deviation over data sets with a true mass in the same one
of the 100 bins that are evenly spaced between 170 and
180 GeV. A key advantage of the per-instance approach
is that it does not need to be retrained if more events are
acquired. By contrast, the per-ensemble approach is only
valid for event samples that have the same sizes as were
used during training.

D. Beyond Regression Example

As remarked in Sec. II E, the ideas discussed above
apply to learning tasks beyond just standard classifica-
tion and regression. As one simple example to illustrate
this, we consider the Gaussian classification task from
Sec. III A 1 and compute the mutual information between
the Gaussian feature and the label. This quantifies how
much information is available in the feature for classifi-
cation and can be directly compared with other features
and other classification tasks.

For this illustration, 105 events are generated each from
two Gaussian distributions with means ±|‘| for fixed ‘.
The mutual information is estimated using a per-instance
classifier as described in Sec. II E and also computed
analytically via Eq. (30). For the per-instance classifier,
we use a neural network that processes two inputs (label
and feature), has two hidden layers with ReLU activation,
and has a single node sigmoid output. The classification
task is to distinguish the nominal dataset from one where
the labels are assigned uniformly at random to the features.
The value of the MLC loss yields an estimate of the mutual
information.

The mutual information results are presented in Fig. 9,
as a function of ‘. As expected, the neural network
strategy yields an excellent approximation to the analytic
calculation. Note that this strategy does require any
binning and naturally extends to high-dimensional data,
since the core component is a neural network classifier.

13

(a) (b)

FIG. 8. Regression in the top quark mass example. (a) An estimate of the log likelihood for samples generated with 172.5 and
175 GeV top quark masses. The vertical axis has been shifted such that the minimum value is at zero. Note that the axis
represents the average log likelihood which is a factor of Nevents di�erent from the total log likelihood. (b) Correlation between
the per-instance predicted mass and the per-ensemble predicted mass in the context of direct regression. The per-ensemble mass
values are put in bins of 0.1 GeV width, and the bands represent the standard deviation of the per-instance mass values in each
bin.

For the per-ensemble direct regression, we use the deep
sets approach in Eq. (31) to handle the permutation-
invariance of the inputs. This approach is also well
suited to handle the large variation in the number of
events in each set due to the event selection e�ect. We
again use PFNs for our practical implementation. We
use the default PFN hyperparameters from the https:
//energyflow.network/ package, except we use linear
activation in the output layer and the mean squared er-
ror loss function. We found that it was important for
the model accuracy to standardize both the inputs and
outputs of the network. Note that this is a di�erent per-
ensemble direct regression setup than used in Ref. [12],
which found excellent performance using linear regression
on sorted inputs.

In Fig. 8b, we compare the output of per-ensemble
direct regression to the output of per-instance direct re-
gression. We find a very strong correlation between these
two very di�erent approaches to computing the same
quantity E[mt|x̨]. The band in Fig. 8b is the standard
deviation over data sets with a true mass in the same one
of the 100 bins that are evenly spaced between 170 and
180 GeV. A key advantage of the per-instance approach
is that it does not need to be retrained if more events are
acquired. By contrast, the per-ensemble approach is only
valid for event samples that have the same sizes as were
used during training.

D. Beyond Regression Example

As remarked in Sec. II E, the ideas discussed above
apply to learning tasks beyond just standard classifica-
tion and regression. As one simple example to illustrate
this, we consider the Gaussian classification task from
Sec. III A 1 and compute the mutual information between
the Gaussian feature and the label. This quantifies how
much information is available in the feature for classifi-
cation and can be directly compared with other features
and other classification tasks.

For this illustration, 105 events are generated each from
two Gaussian distributions with means ±|‘| for fixed ‘.
The mutual information is estimated using a per-instance
classifier as described in Sec. II E and also computed
analytically via Eq. (30). For the per-instance classifier,
we use a neural network that processes two inputs (label
and feature), has two hidden layers with ReLU activation,
and has a single node sigmoid output. The classification
task is to distinguish the nominal dataset from one where
the labels are assigned uniformly at random to the features.
The value of the MLC loss yields an estimate of the mutual
information.

The mutual information results are presented in Fig. 9,
as a function of ‘. As expected, the neural network
strategy yields an excellent approximation to the analytic
calculation. Note that this strategy does require any
binning and naturally extends to high-dimensional data,
since the core component is a neural network classifier.

Direct
regression

Maximum
likelihood

In both cases, the per-instance approaches give the
same result as the per-ensemble approach

24Conclusions and outlook

1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1 1 1

11
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

GitHub.com/bnachman/EnsembleLearning
B. Nachman and J. Thaler in PRD 103 (2021) 116013, 2101.07263

Today, I’ve told you about the
interplay between per-event
and per-ensemble learning

Formally, these are
equivalent. Per-event models
are less complex, but there
may be practical reasons to

prefer one over the other

http://GitHub.com/bnachman/EnsembleLearning

25Backup

26Estimating the Mutual Information 14

FIG. 9. Mutual information between a Gaussian feature
and a label, where the “ signal” (x0 = ‘) and “ background”
(x0 = ≠‘) have opposite means. The estimate using the MLC
loss approach shows good agreement with the exact analytic
expression.

We leave an investigation of this approach in the particle
physics context to future work.

IV. CONCLUSIONS

We have demonstrated a connection between classifiers
trained on single events and those that process multiple
events at the same time. One can take a generic single-
event classifier and build an N -event classifier using simple
arithmetic operations. Such classifiers tend to out-perform
generic N -event classifiers, since we can enforce the IID
assumptions into the learning task. This performance
gap can be mostly recovered by deploying a classifier that
respects the permutation invariance of the set of N events.
We used the deep sets/PFN architecture [62, 63] for this
purpose, but other set-based architectures such as graph
neural networks [64, 65] would also be appropriate.

An amusing feature of the deep sets approach is that
we can use it to reverse-engineer a single-event classifier
from a multi-event classifier by restricting the latent space
to be one-dimensional and fixing a static output function.
Even after enforcing these additional structures, though,
we found both theoretically and empirically that the loss
function gradients are better behaved for single-event
classifiers than multi-event classifiers. Going beyond clas-
sification, we explained how various regression tasks can
be phrased in terms of per-instance parametrized clas-
sification, yielding similar performance to per-ensemble
direct regression. We also mentioned how to compute
distances and divergences between probability densities
without requiring explicit density estimation. These re-
sults hold for any data sample satisfying the IID property.

Ultimately, we did not find any formal or practical
advantage for training a multi-event classifier instead of

a single-event classifier, as least for the cases we stud-
ied. With a carefully selected multi-event architecture,
one can achieve similar performance to a scaled-up per-
event classifier, but the latter will typically train faster.
For direct regression, the per-ensemble strategy might
be conceptually simpler than the per-instance method,
though the per-instance methods allow for a simpler treat-
ment of variably-sized data sets. Note that there may
be situations where a simplifying assumption (e.g. the
linear regression model in Ref. [12]) could yield better
per-ensemble behavior than indicated by our case studies.
At minimum, we hope this paper has demystified aspects
of per-ensemble learning and highlighted some interesting
features of the MLC loss function.

Going beyond the IID assumption, the duality between
per-instance classifiers and per-ensemble classifiers could
have applications to problems with approximate inde-
pendence. For example, flavor tagging algorithms have
traditionally exploited the approximate independence of
individual track features within a jet [66, 67]. Similarly,
emissions in the Lund jet plane [68, 69] are approximately
independent, with exact independence in the strongly
ordered limit of QCD. In both contexts, the instances are
particles (or particle-like features) and the ensemble is the
jet. A potentially powerful training procedure for these
situations might be to first train a per-particle classifier,
then build a per-jet classifier using the constructions de-
scribed in this paper, and finally let the network train
further to learn interdependencies between the particles.

CODE AND DATA

The code for this paper can be found at https://
github.com/bnachman/EnsembleLearning. The physics
datasets are hosted on Zenodo at Ref. [70] for the top
quark dataset and Ref. [71] for the BSM dataset.

ACKNOWLEDGMENTS

We thank Anders Andreassen, Patrick Komiske, and
Eric Metodiev for discussions about the MLC loss. We
thank Rikab Gambhir and Ian Convy for discussions
about mutual information. We thank Adi Suresh for dis-
cussions about the regression task with the classifier loss.
We thank Katherine Fraiser, Yue Lai, Du� Neill, Bryan
Ostdiek, Mateusz Ploskon, Felix Ringer, and Matthew
Schwartz for useful comments on our manuscript. BN
is supported by the U.S. Department of Energy (DOE),
O�ce of Science under contract DE-AC02-05CH11231.
JT is supported by the National Science Foundation un-
der Cooperative Agreement PHY-2019786 (The NSF AI
Institute for Artificial Intelligence and Fundamental In-
teractions, http://iaifi.org/), and by the U.S. DOE
O�ce of High Energy Physics under grant number DE-
SC0012567. BN would also like to thank NVIDIA for
providing Volta GPUs for neural network training.

27Examples: Classification [top quarks]
9

(a) (b)

FIG. 3. Classification in the top quark mass example. (a) A histogram of mb1µ‹ for top quark masses of 172.5 GeV and 175
GeV. The “wgt.” curve is explained later in Sec. III C 2, where we test the performance of a likelihood reweighting. (b) The
di�erence in e�ciency for the 172.5 GeV top quark mass sample (true positive) and the 175 GeV top quark mass sample (false
positive) as a function of the true positive rate for various binary classifiers. Once again, a multi-event classifier (f1æ20) built
from the single-event classifier (f1) has the best performance. For the classifiers trained to process 20 events simultaneously, the
deep sets/PFN approach (f set

20) does better than sorting the inputs (f sort
20).

learning strategy (up to 1000 epochs, early stopping, 10%
batch size) as the other networks is used for the PFN.

The performance of f set
3 is shown in Fig. 2, which gets

much closer to matching the performance of f1æ3. Part
of this improvement is due to enforcing the permutation
symmetry, though there is also a potential gain from the
fact the PFN we used for f set

3 has more trainable weights
than the fully connected network for f sort

3 . All of the f3
variants were considerably more di�cult to train than
f1æ3, likely for the reason discussed in Sec. II C. Thus, we
have empirical evidence for the superiority of single-event
training for multi-event classification.

3. Top Quark Mass Measurement

Our third and final example is motivated by the top
quark mass measurement, as recently studied in Refs. [12,
18]. Extracting the top quark mass is really a regression
problem, which we investigate in Sec. III C. Here, we
consider a related classification task to distinguish two
event samples generated with di�erent top quark masses
(172.5 GeV and 175 GeV). This is a realistic hypothesis
testing task that requires full event ensemble information,
though only per-instance training as we will see.

We use the same dataset as Ref. [18]. Top quark pair
production is generated using Pythia 8.230 [52, 53] and
detector e�ects are modeled with Delphes 3.4.1 [54–56]
using the default CMS run card. After the production
and decay steps tt̄ æ bW +b̄W ≠, one of the W bosons is
forced to decay to µ+‹ while the other W boson decays
hadronically. Each event is recorded as a variable-length
set of objects, consisting of jets, muons, and neutrinos. At

simulation-level, the neutrino is replaced with the missing
transverse momentum. Generator-level and simulation-
level jets are clustered with the anti-kt algorithm using
R = 0.4 and the simulation-level jet is labeled as b-tagged
if the highest energy parton inside the nearest generator-
level jet (�R < 0.5) is a b quark. Jets are required to have
pT > 20 GeV and they can only be b-tagged if |÷| < 2.5.
Furthermore, jets overlapping with the muon are removed.

Events are only saved if they have at least two b-tagged
jets and at least two additional non b-tagged jets. The
b-jet closest to the muon in rapidity-azimuth is labeled
b1. Of the remaining b-tagged jets, the highest pT one
is labeled b2. The two highest pT non-b-tagged jets are
labeled j1 and j2, and typically come from the W boson.
(Imposing the W mass constraint on j1 and j2 would yield
lower e�ciency, though without significantly impacting
the results.) The four-momentum of the detector-level
neutrino (‹) is determined by solving the quadratic equa-
tion for the W boson mass; if there is no solution, the
mass is set to zero, while if there are two real solutions,
the one with the smaller |pz| is selected. Four observables
are formed for performing the top quark mass extraction,
given by the following invariant masses: mb1µ‹ , mb2µ‹ ,
mb1j1j2 , and mb2j1j2 . A histogram of mb1µ‹ is shown for
illustration in Fig. 3a.

We use the same neural network architectures and
training procedure as in the BSM example above, with 1.5
million events per fixed-mass sample. The only di�erence
is that the batch size is set to 0.1% in order to keep the
number of examples to be O(1000). For the per-ensemble
classifier, we take N = 20, though of course for a realistic
hypothesis testing situation, N would be as large as the
number of top quark events recorded in data. To capture

28Examples: Classification [top quarks] 10

FIG. 4. Computational performance of single-event versus
multi-event training. Shown is the e�ciency for the 175 GeV
sample (false positive) for a fixed 50% e�ciency for the 172.5
GeV sample (true positive), plotted as a function of training
epoch. Single-event training (f1æ20) outperforms multi-event
training (f set

20), where both methods go through the full data
set per epoch.

the permutation invariance of the inputs, we construct
f set

20 using the deep sets approach in Eq. (31). We also
build a classifier f1æ20 from the per-instance classifier f1
using Eq. (13).

In Fig. 3b, we see that f1æ20 and f set
20 have comparable

performance, though f1æ20 is noticeably better. Some of
this improvement may be due to di�erences in the network
architecture, but we suspect that most of the gain is due
to the more e�cient training in the per-instance case.
We checked that very poor performance is obtained for
a classifier f20 lacking permutation invariance, with a
ROC curve that was not that much better than f1 alone.
Explicitly breaking the invariance by sorting the inputs
based on mb1µ‹ does help a little, as indicated by the
f sort

20 curve in Fig. 3b, but does not reach the set-based
approach.

Given the similar performance of f1æ20 and f set
20 , it is

interesting to examine which learning strategy is more
computationally e�cient. In Fig. 4, we compare the per-
formance as a function of the training epoch, using the
di�erence of the true and false positive rates at a fixed
50% signal e�ciency. In each epoch, both f1æ20 and f set

20
see the full ensemble of events, so this is an apples-to-
apples comparison as far as data usage is concerned. In
particular, we plot this information per epoch instead of
per compute time to avoid di�erences due to the structure
of the neural networks. (There is not an easy way to con-
trol for possible di�erences in the training time due to the
di�erences in the network structures, since the underly-
ing tasks are di�erent.) The f1æ20 classifier trains much
faster, in agreement with the analysis in Sec. II C, even
though the ultimate asymptotic performance is similar for
both classifiers. Once again, we see better empirical be-
havior from f1æ20 trained on one event at a time version

f set
20 trained on multiple events simultaneously.5

B. Classifiers: Single-Event from Multi-Event

In general, one cannot take a multi-event classifier fN

and extract a single-event classifier f1. It is, however,
possible to construct a special f̃N network such that one
can interpret a subnetwork as a per-event classifier, as
discussed in Sec. II B. When using the MLC loss function,
we can use the functional form in Eq. (14), where f̃N is
a product of fNæ1 terms. Training f̃N , where the only
trainable weights are contained in fNæ1, we can learn a
single-event classifier fNæ1 from multi-event samples.

For the binary cross entropy loss used in our case stud-
ies, where Eq. (4) is needed to convert the classifier to
a likelihood ratio, we have to introduce a slightly di�er-
ent structure than Eq. (14). Let f set

N be a permutation-
invariant classifier, as defined in Eq. (31) using the deep
sets/PFN strategy. Taking the latent space dimension
to be L = 1, the � network can be interpreted as a
single-event classifier. Because the � network outputs are
pooled via summation, we can build an optimal multi-
event classifier if � learns the logarithm of the likelihood
ratio; cf. Eq. (2). With this insight, we can fix the F
function to achieve the same asymptotic performance as
a trainable F by setting:

F (x̨) =
exp

! qN
i=1 �(xi)

"

1 + exp
! qN

i=1 �(xi)
" . (32)

Using Eq. (4), one can check that this F is monotonically
related to the ensemble likelihood ratio. Similarly, � will
be monotonically related to the optimal f1, which we call
fNæ1 for the remainder of this discussion.

This construction is demonstrated in Fig. 5 for the
Gaussian example. We see that the deep sets architecture
with the fixed form of Eq. (32) (f̃ set

10) has the same or
better performance as the 10-instance fully-connected
classifier with more network capacity (f10). Similarly, the
� function used as a single-event classifier (f10æ1) has
nearly the same performance as an independently trained
single-event classifier (f1).

The same conclusion holds for the BSM classification
task, shown in Fig. 6. The only di�erence between the
set-based architectures f̃ set

3 and f set
3 is that the former

uses the fixed functional form in Eq. (32). The fact
that they achieve nearly the same performance is ensured
by the IID relation in Eq. (2). The per-instance f3æ1
network extracted from f̃ set

3 is not quite as powerful as

5 Away from the asymptotic limit, one could try to improve the
empirical per-ensemble performance through data augmentation.
Data augmentation is a generic strategy to help neural networks
learn symmetries, and the IID structure can be reinforced by
showing the network new ensembles built from sampling instances
from the existing ensembles.

