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Simulation-Based Inference

Look for deviations to find New Physics 

Real Data from LHC Simulation using Standard 
Model of Particle Physics
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Typical use of ML

ML classifier trained for : 
• Increase sensitivity to “signal” (example Higgs Bosons) events which give information about the theory 

parameters 
• Reject “background” events 

Output of classifier used as an “optimal” observable to measure theory parameters using a maximum 
likelihood fit over several bins of histogram

CHAPTER 7. LIKELIHOOD-FREE INFERENCE

study, discuss how this strategy can be adapted for a signal strength measurement, and outline
dataset production setup. Finally it will present some very promising results for a simplified
problem (without accounting for background events coming from gg and qq̄ initial states, and
using Delphes for detector simulation) and discuss the future prospects within ATLAS.

7.1 The troubles that come with quantum interference
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Figure 9. Distributions of the BDT discriminants for the data taken at
�

s = 8 TeV in the signal
regions of the VBF (left) and boosted (right) categories for the �lep�lep (top), �lep�had (middle),
and �had�had (bottom) channels. The Higgs boson signal (mH = 125 GeV) is shown stacked with
a signal strength of µ = 1 (dashed line) and µ = 1.4 (solid line). The background predictions
are determined in the global fit (that gives µ = 1.4). The size of the statistical and systematic
normalisation uncertainties is indicated by the hashed band. The ratios of the data to the model
(background plus Higgs boson contributions with µ = 1.4) are shown in the lower panels. The
dashed red and the solid black lines represent the changes in the model when µ = 1.0 or µ = 0 are
assumed respectively.

– 37 –

Figure 7.1 – Example of an ATLAS signal strength measurement: Distribution of a BDT
discriminant for data taken at

Ô
s = 8 TeV in the signal region of the VBF category for the

H æ ·had·had channel. [125]

In a traditional signal strength (µ) measurement analysis where quantum interference plays no
role, one can simulate the signal and background samples separately. The number of expected
events is a linear function of µ. One can then train a machine learning classifier (such as a
Boosted Decision Tree) to separate the signal and background samples and perform a parameter
estimation fit on the distribution of the score when the model is applied to real data recorded by
the detector (an example of such a fit is shown in Figure 7.1 from the ATLAS H æ ·· analysis
from Run1). Neglecting systematics, and under the assumption that it is an optimal classifier,
this is the most precise measurement one can possibly perform. The expected number of events
is simply linear in µ (Nexp = µS + B, where S is the signal yield and B is the background
yield for the SM), and there is no need to train the model on separate datasets to be optimal to
di�erent possible true values of µ in nature. The mathematical reasoning for this is discussed
in Chapter 4.

In the presence of quantum interference, this strategy is no longer optimal. The expected number
of events is no longer linear in µ, but follows the equation,

Nexp = µS + Ô
µI + B, (7.1)

158

Compare various simulations to data to find best fit
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Simulation-Based Inference - Systematic Uncertainties

Look for deviations to find New Physics 

Real Data from LHC Simulation using Standard 
Model of Particle Physics

But simulation isn’t perfect, known sources of differences between simulation and 
data…
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Systematic Uncertainties

• Statistical uncertainties shrink as you take more data, systematic uncertainties usually don’t 

• Imagine a metal ruler calibrated at room temperature but used at near 0 K 

• HEP example: Jet Energy Scale 

• Systematics may dominate over statistical uncertainties when a lot of data is 
available 

• We can measure known unknown in the “control region” 

• Final measurement includes a fit on “parameters of interest” as well as these 
unknown “nuisance parameters” 

• The auxiliary measurement used as a prior on systematic (Z) or fit done 
simultaneously Effect of Tau Energy 

Scale (Z) on 
momentum 

measurement

, HiggsMLH → ττ

 (GeV)pτ
t

Image: https://www.shutterstock.com/image-photo/measuring-
stick-snow-ruler-shows-amount-1896983614
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Nominal Classifier and Data Augmentation

• Baseline solution has been to train a classifier on nominal data (Z=1) and just account for uncertainties in 
measurement – which may be large. Full profile likelihood or shift Z and look at impact.
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• Baseline solution has been to train a classifier on nominal data (Z=1) and just account for uncertainties in 
measurement – which may be large. Full profile likelihood or shift Z and look at impact.
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measurement – which may be large. Full profile likelihood or shift Z and look at impact.
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• One way to attack the problem is “Data Augmentation”: Train classifier on simulated data generated with various 
values of Z, hope that it learns a robust decision function
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Nominal Classifier and Data Augmentation

• Baseline solution has been to train a classifier on nominal data (Z=1) and just account for uncertainties in 
measurement – which may be large. Full profile likelihood or shift Z and look at impact.

The classifier will learn some general characteristics, but will not be “optimal” for any particular value of Z 

“Optimal”: For us means classifier trained at the true value of Z
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Invariance: Explicitly train for insensitivity to Z

Domain adaptation strategies also used in the past: Eg. Pivot Adversarial Training to make classifier output 
invariant to systematic (Z)

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

Figure 1: Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The
adversary r models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through
the output f(X; ✓f ) of the classifier. By maximizing the antagonistic objective Lr(✓f , ✓r), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance
parameter Z and therefore pivotal.

type of the nuisance parameter (discrete or continuous) or of its prior. Finally, we demonstrate the
effectiveness of the approach with a toy example and examples from particle physics.

2 Problem statement

We begin with a family of data generation processes p(X,Y, Z), where X 2 X are the data, Y 2 Y
are the target labels, and Z 2 Z are the nuisance parameters that can be continuous or categorical. Let
us assume that prior to incorporating the effect of uncertainty in Z, our goal is to learn a regression
function f : X ! S with parameters ✓f (e.g., a neural network-based probabilistic classifier) that
minimizes a loss Lf (✓f ) (e.g., the cross-entropy). In classification, values s 2 S = R|Y| correspond
to the classifier scores used for mapping hard predictions y 2 Y , while S = Y for regression.

We augment our initial objective so that inference based on f(X; ✓f ) will be robust to the value
z 2 Z of the nuisance parameter Z – which remains unknown at test time. A formal way of enforcing
robustness is to require that the distribution of f(X; ✓f ) conditional on Z (and possibly Y ) be
invariant with the nuisance parameter Z. Thus, we wish to find a function f such that

p(f(X; ✓f ) = s|z) = p(f(X; ✓f ) = s|z0) (1)

for all z, z0 2 Z and all values s 2 S of f(X; ✓f ). In words, we are looking for a predictive function
f which is a pivotal quantity with respect to the nuisance parameters. This implies that f(X; ✓f ) and
Z are independent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is imposed with respect to p(X|Z) where Y is
marginalized out. In some situations however (see e.g., Sec. 5.2), class conditional independence of
f(X; ✓f ) on the nuisance Z is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y .

3 Method

Joint training of adversarial networks was first proposed by (Goodfellow et al., 2014) as a way to
build a generative model capable of producing samples from random noise z. More specifically, the
authors pit a generative model g : Rn ! Rp against an adversarial classifier d : Rp ! [0, 1] whose
antagonistic objective is to recognize real data X from generated data g(Z). Both models g and d are
trained simultaneously, in such a way that g learns to produce samples that are difficult to identify by
d, while d incrementally adapts to changes in g. At the equilibrium, g models a distribution whose
samples can be identified by d only by chance. That is, assuming enough capacity in d and g, the
distribution of g(Z) eventually converges towards the real distribution of X .

2
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2

Classifier output for various values of Z

Classifier output becomes invariant to Z, but not 
necessarily optimal at any particular value of Z, 
also sometimes not even possible to be invariant

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓f ) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓f ) for predicting Y given X , but such
that the probability distribution of f(X; ✓f ) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {xi, yi, zi}Ni=1, from which we train a
neural network f minimizing Lf (✓f ) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓f ) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.
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Adversarial Training
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output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.
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p(·) denotes a probability density, S represents the sig-
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An alternative method is to augment the training data
to include signal and background samples with several
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ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
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An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
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and adversary are concatenated together through a gra-
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the second loss has a relative weight of �, a tunable hyper-
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In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
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• Use the parameterised classifier response for final likelihood fit to constrain parameters of interest 
(POI) and nuisance parameters (NP)

Data 
 with Z = ?Repeat for each hypothesis z

In following slides, POI will be the signal strength parameter ‘μ’ and the NP will be denoted ‘Z’
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Caveat: When not to use any of these models
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Caveat: When not to use any of these models

Two point systematics: Don’t lose your only handle on these 
systematics! 

Herwig vs Pythia - If you are invariant to this difference are you 
sure you are invariant to underlying physics reason for these 
differences?
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III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .
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The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
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To illustrate the di↵erent approaches in a simple set-
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Gaussian example with a two-dimensional feature space
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from Gaussian distributions in the two features, with
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Being invariant to Z would result in a 
terrible classifier
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A. Models

In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.

1. Baseline and Uncertainty-Aware Classifiers

The baseline classifier computes the score

s(x) =
p(x|z = ⇡

4 , S)

p(x|z = ⇡
4 , S) + p(x|z = ⇡

4 , B)
, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware,
evaluated at z = ⇡

4 , on data
where z = ⇡

4

(d) Uncertainty-aware,
evaluated at z = ⇡

2 , on data
generated with z = ⇡

2

FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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uncertainty-aware classifier on the same datasets,
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check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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Syst-Aware Classifier is able to rotate its decision function based on Z while the Baseline Classifier decision function remains frozen
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3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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A. Models

In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.

1. Baseline and Uncertainty-Aware Classifiers

The baseline classifier computes the score

s(x) =
p(x|z = ⇡

4 , S)

p(x|z = ⇡
4 , S) + p(x|z = ⇡

4 , B)
, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware,
evaluated at z = ⇡

4 , on data
where z = ⇡

4

(d) Uncertainty-aware,
evaluated at z = ⇡

2 , on data
generated with z = ⇡

2

FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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classifier exactly invariant to z would have zero separa-
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compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
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In fact for the toy problem we used analytical classifiers instead of 
training networks
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.

13

Scan the 2D Likelihood space in  vs Z μ

Template Baseline Classifier Score Histograms for various Z

Nominal

Syst Down

Syst Up
Observed Data 
(  unknown)zT

6

B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with
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(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
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(c) Uncertainty-aware, on
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
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(c) Uncertainty-aware, on
data where z = ⇡
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
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4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .

zT →  True z
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of

7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s 

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s 

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(a) Baseline 7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s 

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s 

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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Scan the 2D Likelihood space in  vs Z μ

Template Baseline Classifier Score Histograms for various Z

Nominal

Syst Down

Syst Up
Observed Data 
(  unknown)zT

Likelihood statistical component = Poisson per histogram bin 
Likelihood systematic component = Gaussian (1, 0.5) as prior on Z 
Full Likelihood = statistical + systematic

Next step: profile over Z dimension (take the bin 
with maximum likelihood in each column)
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of

7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s 

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s 

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(a) Baseline 7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s 

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s 

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
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4 , on data where z = ⇡
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z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.

Minimum 

But could be done unbinned/KDE too

4

III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .

zT →  True z
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the o�cial ATLAS software [65]. The three largest back-
grounds from Z/�

⇤ ! ⌧⌧ , tt̄ and W + jets are simulated
with the same chain and mixed in proportions deter-
mined by their relative cross sections. Di↵erent aspects
of the Z/�

⇤ ! ⌧⌧ background are simulated with Alp-

gen, Pythia8, Herwig, and Sherpa [66]; the details
can be found in Table 1 of Ref. [58]. The tt̄ background is
simulated with Powheg and Pythia8 and the W +jets
background is simulated withAlpgen [67] and Pythia8.

(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 6: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers. Narrower curves indicate more precise

measurements having accounted for systematic and
statistical uncertainties. The baseline classifier assumes

z = ⇡
4 , and matches the performance of the

uncertainty-aware classifier in data generated with
z = ⇡

4 (top). In data generated with z = ⇡
2 , the power

of all classifiers other than the uncertainty-aware
classifier become significantly weaker.

Each event is characterized by 29 features2, including the
lepton momenta and angles, the magnitude and direction
of missing transverse momentum, the energy and angles
of leading and sub-leading jets, and several other primary
and derived variables. See Ref. [56] for details.
The most important nuisance parameter is the un-

known absolute energy scale of the hadronically decaying
⌧ leptons. We follow prior studies [52, 59] and model this
using a skewing function [69] which is applied to the ⌧ lep-
ton ET, for signal and background alike. The minimum
ET threshold of 22 GeV is applied after skewing.
At the nominal value of the nuisance parameter, z = 1,

the ⌧ lepton energies are left unchanged. The impact of
z = 0.9 or 1.1, on several features is shown in Fig. 7.
The (unweighted) total number of events that pass the
ET threshold for the z = 0.9, z = 1 and z = 1.1 datasets
are 618906, 719349 and 818201 respectively. The data are
split into training and test set in the ratio 2:1. Since the
data at various values of z are generated from the nominal
sample, the samples are to a large extent correlated. The
train-test split therefore is determined before the skewing
function and ET threshold are applied, ensuring complete
independence between training and test sets.
Thirty bins are used to construct the template and

observed histograms.

A. Description of Trained Models

All methods were implemented using neural networks.
The baseline classifier was trained only on data at z = 1,
while the data augmentation classifier, uncertainty-aware
classifier and the adversarial classifier are all trained at
24 values spaced between z = 0.7 and z = 1.4. Two
additional classifiers were also trained on data at z = 0.8
and z = 1.1 to estimate the best possible performance
for an unparameterized classifier at these values of the
nuisance parameter.
Technical details about the training procedure and ar-

chitectures of the models are given below.

1. Baseline Classifier

The neural network comprises 10 hidden layers with
512 nodes each, ReLU activations and L2 kernel regu-
larizers for all but the first hidden layer and a final layer
with a single node and sigmoid activation. It was trained
with an RMSProp optimizer, BCE loss and a batch size
of 4096.

2 The DER mass MMC feature listed in Ref. [56] was not included
in the studies, following precedent set by Ref. [52], because the
Missing Mass Calculator [68] is slow to run and as an MCMC
algorithm, introduces an additional source of stochasticity which
makes comparisons di�cult.
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Profile away Z - Example at (μ, Z)True = (1, 1.57)

Narrower is better: We can exclude wrong values of μ with 
greater confidence. 

The profiled (Negative-Log-) Likelihood curve for 
Uncertainty-Aware classifier is much narrower ⇒ smallest 
[statistical + systematic] uncertainty on measurement 

Narrower is better

Signal Strength
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Profile Likelihood

Standard method of including the systematic 
uncertainty into the likelihood computation 

We simply make the selection/observable a 
function of z 

In principle could also be done in cut-based 
analysis: make cut a continuous function of z

The Profile Likelihood approach

3

● The profile likelihood is a way to include systematic uncertainties in the likelihood
○ systematics included as "constrained" nuisance parameters
○ the idea behind is that systematic uncertainties on the measurement of µ come from 

imperfect knowledge of parameters of the model (S and B prediction)
■ still some knowledge is implied: "θ = θ0 ± Δθ"

○ external / a priori knowledge interpreted as "auxiliary/subsidiary measurement", 
implemented as constraint/penalty term, i.e. probability density function
(usually Gaussian, interpreting "±Δθ" as Gaussian standard deviation)

- usually θ0=0 and Δθ=1 (convention)
- define effect of systematic j on prediction x in bin i at "+1" and "-1",
- then interpolate & extrapolate for any value of θ 

From Michele Pinamonti’s talk: 

https://indico.cern.ch/event/727396/contributions/3021899/attachments/1657532/2654085/
Statistical_methods_at_ATLAS_and_CMS_2.pdf
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But in a real measurement we don’t know true Z a priori, 
would this still help?
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But in a real measurement we don’t know true Z a priori, 
would this still help?

Yes!

Okay, it works on your handcrafted toy problem. 
What about a real physics dataset?
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HiggsML Public Dataset with Tau Energy Scale (TES) as Z

Parameter of Interest is Higgs signal strength μ, and 
TES is the nuisance parameter Z

8

2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam

(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.
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transverse mass of the missing transverse energy and

the lepton.
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We later realised dataset isn’t ideal, stats limited..



18

Test performance for “observed” at Systematic below Nominal

μ = 1, Z= 0.8

Train actual networks this time

(Signal Strength)
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Test performance for “observed” at Systematic below Nominal

Uncertainty-Aware coincides with classifier trained on 
true Z  

⇒ It is optimal!

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Narrower is better

Up is better

μ = 1, Z= 0.8

Train actual networks this time

(Signal Strength)
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Test performance for “observed” datasets at nominal and above nominal Z

In every case the Aware Classifier is as good as the optimal one, no other technique 
matches its performance everywhere

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Aware and Baseline coincide

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Aware and locally optimal 
coincide

μ = 1, Z= 1 (nominal)
μ = 1, Z= 1.1
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Practical advantages of factorising inference

While using histogram (or KDE) templates seems 
clunky, it has practical advantages: 
• More diagnostic tools: look at histograms, test for 

over-constraining of z 
• Study impact of/profile over untrained nuisance 

parameters 
• No worries about calibration of NN

6

B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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Possible Extensions

• Uncertainty aware Baysean Networks? 

• Combine uncertainty awareness with inference awareness? 

• How to deal with uncertainties when training directly on calo images / raw data ? 

• …
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Conclusion

• Systematic uncertainties are a nuisance in HEP, even more relevant as we collect more 
data 

• Training a systematic aware classifier and profiling over the nuisance parameter 
provides performance similar to a locally optimal classifier 

• This prescription can also handle auxiliary measurements of the nuisance parameter 
straightforwardly by combining the likelihoods 

• Not a black-box procedure: Can also study impact of untrained systematics on 
sensitivity  

• Solution scales to real physics dataset, easy to integrate into ATLAS/CMS chain

arXiv:2105.08742

https://arxiv.org/pdf/2105.08742.pdf
https://arxiv.org/pdf/2105.08742.pdf
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Backup
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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(a) Baseline, on data where
z = ⇡

4

(b) Baseline, on data where
z = ⇡

2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

(e) Data augmentation, on
data where z = ⇡

4

(f) Data augmentation, on
data where z = ⇡

2

(g) Adversarial training, on
data where z = ⇡

4

(h) Adversarial training, on
data where z = ⇡

2

FIG. 12: The negative log-likelihood (Eq. B1) as a
function of the parameter of interest µ and the nuisance
parameter z in the auxiliary measurement study, using
templates from the baseline (first row), systematic

aware (second row), data augmentation (third row) and
adversarial classifier (fourth row). On the left column,
the data are generated with z = ⇡

4 , while on the right
column, the data are generated with z = ⇡

2 . The red
dot indicates the maximum likelihood estimate which
coincides with the true value of µ, z in each case. Note

that the z-axis scale is not uniform in all figures.
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Auxiliary measurement of Z instead of prior 
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(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 13: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers in the auxiliary measurement study. The
baseline classifier assumes z = ⇡

4 , and matches the
performance of the uncertainty-aware classifier in data
generated with z = ⇡

4 (top). In data generated with
z = ⇡

2 , the power of all classifiers other than the
uncertainty-aware classifier become significantly weaker
despite a better constraint on z compared to Sec. IV.
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Appendix B: Gaussian Example with Auxiliary
Measurement of z

A study is performed by replacing the prior on z in
Eq. 4 with a simultaneous auxiliary measurement. For
simplicity the auxiliary measurement is of a Gaussian
distribution with mean at zT and standard deviation of
0.5. 105 events uniformly weighted 0.1 are generated at
each of the 21 values of z. The negative log-likelihood
then reads,

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

�
mbinsX

k=1


N

aux
k · log (azk) � a

z
k � log(�(Naux

k )

�
,

(B1)

where a
z
k is the number of events expected in bin k of

the auxiliary measurement for zT = z and N
aux
k is the

number of events actually observed in that bin. Four
bins are used to construct the template and observed
histograms for the auxiliary measurement.

The classifiers described in Sec. IV are re-used for this
study, no re-training is required. The likelihood scans
for the various approaches are shown in Fig. 12. For data
generated at z = ⇡

2 all approaches can exclude z = 0 since
the auxiliary measurement constrains z much more than
the prior used in Sec. IV; Fig. 5. The profile likelihood
in Fig. 13 shows that although the curves are narrower
compared to Fig. 6, the overall conclusions discussed in
Sec. IV remain valid.

Appendix C: Tests at µ = 2 for Physics Example

The comparison of the four approaches was also per-
formed for data where the true value of the parameter
of interest µ is 2. The profile likelihoods in Fig. 14 show
that the conclusions of Sec. V remain valid.

Simplistic auxiliary measurement of   

No need to re-train any network, change only in likelihood 
computation step 

All methods provide improved limits on  if Z is tightly 
constrained 

Aware classifier still best one to use

zT

μ
Measure Z

Measure Z

Prior on Z

Baseline classifier trained on nominal

Now excludes wrong z 
confidently



25

Test performance for “observed” datasets at μ = 2

In every case the Aware Classifier is as good as the optimal one, no other technique 
matches its performance everywhere

18

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 14: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 2. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.
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Training Sub-Networks Individually

• Systematic effects are very subtle and often difficult to learn (effect of random noise much larger than 
systematic) 

• A simple dense network parameterised on Z tends to overtrain before learning the full dependence on Z 

• Solution: Train two subnetworks independently for Z<1 and Z≥1 and combine with a if-else


