Uncertainty Aware Learning For High Energy Physics

Ai:s“h‘ik Ghsh, BenjamihNaohmah, ADanh»ieI Whitéén ‘
CMS ML Town Hall
26 July 2021
BERKELEY
LAB
N
1 'l lv
|
I

arXiv:2105,08742

1
‘| ,|'
||


https://arxiv.org/pdf/2105.08742.pdf
https://arxiv.org/pdf/2105.08742.pdf

Simulation-Based Inference

dard Model of El y Particles

57 v
i y
o i

* Simulation using Standard
es paarom HE Model of Particle Physics



Typical use of ML

ML classifier trained for :

* Increase sensitivity to “signal” (example Higgs Bosons) events which give information about the theory
parameters

* Reject "background” events

Qutput of classifier used as an “optimal” observable to measure theory parameters using a maximum
likelihood fit over several bins of histogram
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Simulation-Based Inference - Systematic Uncertainties

y Particles dard Model of El y Particles
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Look for deviations to find New Physics

| g __ <~ <o > Sik
Real Data from LHC Simulation using Standarg

Model of Particle Physics

But simulation isn't perfect, known sources of differences between simulation and
data...



Systematic Uncertainties

e Statistical uncertainties shrink as you take more data, systematic uncertainties usually don't
 |magine a metal ruler calibrated at room temperature but used at near O K

« HEP example: Jet Energy Scale

e Systematics may dominate over statistical uncertainties when a lot of data is
avallable

® We Caﬂ measure knOwn UnknOwn |n the “ContrOl reglOn” Image: https://www.shutterstock.com/image-photo/measuring-

stick-snow-ruler-shows-amount-1896983614

 Final measurement includes a fit on “parameters of interest” as well as these H — 77, HiggsML
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Nominal Classifier and Data Augmentation

» Baseline solution has been to train a classifier on nominal data (Z=1) and just account for uncertainties Iin

measurement — which may be large. Full profile likelihood or shift Z and look at impact.
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Nominal Classifier and Data Augmentation

e Baseline solution has been to train a classifier on nominal data (Z=1) and just account for uncertainties in
measurement — which may be large. Full profile likelihood or shift Z and look at impact.

Simulation

wWith Z =-1.0

 One way to attack the problem is "Data Augmentation”: Train classifier on simulated data generated with various
values of Z, hope that it learns a robust decision function
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with Z = 0.7




Nominal Classifier and Data Augmentation

e Baseline solution has been to train a classifier on nominal data (Z=1) and just account for uncertainties in
measurement — which may be large. Full profile likelihood or shift Z and look at impact.

Simulation

wWith Z =-1.0

 One way to attack the problem is "Data Augmentation”: Train classifier on simulated data generated with various
values of Z, hope that it learns a robust decision function

Simulation Simulation Simulation Simulation Simulation

with Z = 0.8 [l with Z = 0.9 with Z = 1.0 with Z = 1.1

Simulation
with Z =1.2

with Z = 0.7

The classifier will learn some general characteristics, but will not be “optimal” for any particular value of Z

“Optimal”: For us means classifier trained at the true value of Z



1611.01046

Similar ideas: 1905.10384,
1305.7248, 190/7.116/74,

Invariance: Explicitly train for insensitivity to Z epicont_chep2018_06024

Domain adaptation strategies also used in the past: EQ. Pivot Adversarial Training to make classifier output
invariant to systematic (Z)

Classifier f Adversary r

x / N\ X 09):0)
f(X;05) / v2 (f(X;05);0,)
X — — | — O 73(71,’72,...)
| O
| /4



https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1905.10384.pdf
https://arxiv.org/abs/1305.7248
https://arxiv.org/pdf/1907.11674.pdf
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06024/epjconf_chep2018_06024.html
https://arxiv.org/pdf/1905.10384.pdf
https://arxiv.org/abs/1305.7248
https://arxiv.org/pdf/1907.11674.pdf
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06024/epjconf_chep2018_06024.html

1611.01046

Similar ideas: 1905.10384,
1305.7248, 190/7.116/74,

Invariance: Explicitly train for insensitivity to Z epicont_chep2018_06024

Domain adaptation strategies also used in the past: EQ. Pivot Adversarial Training to make classifier output
invariant to systematic (Z)
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Classifier output for various values of Z

Classifier output becomes invariant to Z, but not
necessarily optimal at any particular value of Z,
also sometimes not even possible to be invariant
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We advocate for the opposite

* [Fully parameterise the classifier on Z in a “systematic aware” way
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You always get the best classitier for each value of Z
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We advocate for the opposite

* [Fully parameterise the classifier on Z in a “systematic aware” way

’ 1 ° 2, e o o o
X, “ Data

Repeat for each hypothesis 7 .
P yP with Z =7

Similar to 1601.07913

* [ntuition: Allow the analysis technigue to vary with /
You always get the best classitier for each value of Z

 Use the parameterised classifier response for final likelihood fit to constrain parameters of interest
(POI) and nuisance parameters (NP)

In following slides, POl will be the signal strength parameter ‘u’” and the NP will be denoted '
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Caveat: When not to use any of these models



Caveat: When not to use any of these models

Two point systematics: Don't lose your only handle on these
systematics!

Herwig vs Pythia - It you are invariant to this difference are you

sure you are invariant to underlying physics reason for these
differences”



Feature 2

Demonstration on Toy Problem

Feature 1

Ns,obs
U B Ns,exp
Z = Angle
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Feature 2

Demonstration on Toy Problem

Ns,obs
U - Ns,exp
Z = Angle

Being invariant to Z would result in a

Feature 1 terrible classifier
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Nominal and Systematic Up Examples

Baseline Classifier ncertainty-Aware Classifier

Feature 2

Nominal “Data”

| « Signal

AUC=0.978 AUC=0.978

Optimal

Feature 2

Optimal

—2 0 2 4 _4 _2 0 2 4

Feature 1 Feature 1

SystUp “Data”

11



Nominal and Systematic Up Examples

Feature 1

Baseline Classitier Uncertainty-Aware Classifier
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Nominal and Systematic Up Examples
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Syst-Aware Classifier is able to rotate its decision function based on Z while the Baseline Classifier decision function remains frozen 11



Nominal and Systematic Up Examples

Baseline Classifier Uncertainty-Aware Classifier
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But In a real measurement we don't know true Z a priori,
would this still help®
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But In a real measurement we don't know true Z a priori,
would this still help®

| et’'s see what we’ll need to do..
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Scan the 2D Likelihood space in Z vs u

Template Baseline Classifier Score Histograms for various Z
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Scan the 2D Likelihood space in Z vs u

Template Baseline Classifier Score Histograms for various Z
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Scan the 2D Likelihood space in Z vs u

Template Baseline Classifier Score Histograms for various Z
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Profile away Z - Example at (Y, Z)we= (1, 1.57)

—Uncertainty Aware Data Augmentation

—Baseline —Adversarial
10 Narrower is better: We can exclude wrong values of y with

greater confidence.
8 - Narrower is better

The profiled (Negative-Log-) Likelihood curve for
Uncertainty-Aware classifier is much narrower = smallest

[statistical + systematic] uncertainty on measurement

NLL - min(NLL)
@)

050 0.75 1.00 1.25 1.50 1.75

u
Signal Strength
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uncertainty into the likelihood computation

We simply make the selection/observable a
function of z

In principle could also be done in cut-based
analysis: make cut a continuous function of z

Profile Likelihood

The Profile Likelihood approach

e The profile likelihood is a way to include systematic uncertainties in the likelihood
o systematics included as "constrained" nuisance parameters
o the idea behind is that systematic uncertainties on the measurement of y come from
imperfect knowledge of parameters of the model (S and B prediction)
m still some knowledge is implied: "0 = 6, + AB"

(3
3
3

L(n,0%u,0)= ] Plnuilp-Si(6 )< [ 6(6916;,A0;)

ZV ]egySt \ A ;
‘“s‘B T
B | - usually 8°=0 and A8=1 (convention)
oy - define effect of systematic j on prediction x in bin jat "+1" and "-1",
9*”’4 - then interpolate & extrapolate for any value of 6

o external / a priori knowledge interpreted as "auxiliary/subsidiary measurement’,
implemented as constraint/penalty term, i.e. probability density function
(usually Gaussian, interpreting "+A8" as Gaussian standard deviation)

From Michele Pinamonti’s talk:
https://indico.cern.ch/event/727396/contributions/3021899/attachments/1657532/2654085/
Statistical_methods_at_ATLAS_and_CMS_2.pdf
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Feature 2

Profile Likelihood

uncertainty into the likelihood computation

We simply make the selection/observable a The Profile Likelihood approach

function of z e The profile likelihood is a way to include systematic uncertainties in the likelihood

o systematics included as "constrained" nuisance parameters

In prmmple could also be done In cut-based o the idea behind is that systematic uncertainties on the measurement of y come from

analysis: make cut a continuous function of z imperfect knowledge of parameters of the model (S and B prediction)
m still some knowledge is implied: "0 = 6, + AB" ;
g .| L(n,0%u,0)= ] Plnuilp-Si(6 )< [] 66916;,00;)
zV femyes \ ‘ |
- N1 e “E
0 it Sl RN e
- ' o 0 - 2
- L -1 g e - usually 6°=0 and AB6=1 (convention)
N . 0: min - define effect of systematic j on prediction x in bin jat "+1" and "-1",
| ‘g0 | | | | | | 33’4 e - then interpolate & extrapolate for any value of 6
Feature 1 Feature 1 //'v s e A
o external / a priori knowledge interpreted as "auxiliary/subsidiary measurement”,
implemented as constraint/penalty term, i.e. probability density function
3

(usually Gaussian, interpreting "+A8" as Gaussian standard deviation)

From Michele Pinamonti’s talk:

https://indico.cern.ch/event/727396/contributions/3021899/attachments/1657532/2654085/
Statistical_methods_at_ATLAS_and_CMS_2.pdf
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But In a real measurement we don't know true Z a priori,
would this still help®
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But In a real measurement we don't know true Z a priori,
would this still help®

Yes!
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But In a real measurement we don't know true Z a priori,
would this still help®

Yes!

Okay, it works on your handcrafted toy problem.
What about a real physics dataset”
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HiggsML Public Dataset with Tau Energy Scale (TES) as Z

May to September 2014

When High Energy Physics meets Machine Learning
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Parameter of Interest is Higgs signal strength y, and
TES is the nuisance parameter /
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We later realised dataset isn't ideal, stats limited..

centrality
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Test performance for “observed” at Systematic below Nominal

Train actual networks this time

u=1,Z=0.8

(Signal Strength)

18



Test performance for “observed” at Systematic below Nominal

- Tralned on true Z —Adversarial

—Uncertainty Aware Data Augmentation

—Baseline | o
2.00 Traln actual networks this time

1.75 A

-
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=
N
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Narrower Is better . L . . .
Uncertainty-Aware coincides with classifier trained on

true Z
= |t Is optimal!
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NLL - min(NLL)

u=1,Z=0.8
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----Baseline
—Uncertainty Aware

2.00

1.75 A

1.50 A

NLL - min(NLL)

0.25 -

0.00 A

1.25
1.00

ratio

0.75

Test performance for “observed” datasets at nominal and above nominal Z

—Adversarial
Data Augmentation
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M=1,Z=1 (nominal)

Aware and Baseline coincide
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—Adversarial
Data Augmentation

0.50 A

p=1,2=1.1

Aware and locally optimal
coincide

In every case the Aware Classifier is as good as the optimal one, no other technique

matches its performance everywhere
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Practical advantages of factorising inference

e using histogram (or KDE) templates seems
Ky, It has practical advantages:
 More diagnostic tools: look at histograms, test for

over-constraining of z

o Study Im

pact of/protile over untrained nuisance

parameters

e No worries about calibration of NN
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Possible Extensions

Uncertainty aware Baysean Networks”
Combine uncertainty awareness with inference awareness?

How to deal with uncertainties when training directly on calo images / raw data ?

21



Conclusion

Systematic uncertainties are a nuisance in HEP, even more relevant as we collect more

data

Traini

Drov

INg a systematic aware classifier and profi

ides performance similar to a locally optinr

Ing over the nuisance parameter
al classifier

This prescription can also handle auxiliary measurements of the nuisance parameter
straightforwardly by combining the likelihoods

Not a black-box procedure: Can also study impact of untrained systematics on
sensitivity

Solution scales to real physics dataset, easy to integrate into ATLAS/CMS chain

arxXiv:2105.08742
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Auxiliary measurement of Z instead of prior

Slmp|IStIC auxiliary measurement of <7 Baseline classifier trained on nominal

le3

led

1.50

No need to re-train any network, change only In likelihood
computation step

1.25

1.00

~ EEENNNNNENNNEEENEEAREAEEEN 0.75

0.50
0.50¢

NIT - min(NIT) + 1
Z

All methods provide improved limits on u it Z is tightly M Prior on 7
constrained T o i u
H Now excludes wrong z
Aware classifier still best one to use confidently
—Uncertainty Aware —Adversarial
—Baseline Data Augmentation
10
—log L(u, z[{x;}) = 8-
Thins - 2 & Measurg Z
= — ) |N; -log (usj + bj) — psj — by — log(T(N;)) E . /
j=1 t - - ,
= 2- . 4
Mbins [ =
- N** - log (a]i) —ap — log(P(ngux) 7 ° 050 075 1.00 125 1.50 1.5
k=1 - - H

(b) Data generated with z = 7. 24



Test performance for “observed” datasets at y = 2

---Trained on true Z —Adversarial ---Trained on true Z —Adversarial
—Uncertainty Aware Data Augmentation ----Baseline —Adversarial —Uncertainty Aware Data Augmentation
—Baseline —Uncertainty Aware Data Augmentation —Baseline
2.00 2.00 2.00 -
1.75 - 1.75 - 1.75 -
___1.50 __1.50 ___1.50
= 1.25 > 1.25 > 1.25
= 1.00 = 1.00 = 1.00
& & &
' 0.75 ' 0.75 ' 0.75
— - —
— — —
= 0.50 = 0.50 = 0.50
0.25 0.25 - 0.25
0.00 0.00 - 0.00 -
1.25 1.25 1.25
O O O
Jr_UJ 100 ......................... -I(—UJ 100 .Ir_UJ 100 ......................................................................
— _— - -
0.75 1 1 1 1 | 0.75 I | | | I 0.75 1 1 1 1 1
1.6 1.8 2.0 2.2 2.4 1.6 1.8 2.0 2.2 2.4 1.6 1.8 2.0 2.2 2.4

In every case the Aware Classifier is as good as the optimal one, no other technique

matches its performance everywhere
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Training Sub-Networks Individually

Systematic effects are very subtle and often difficult to learn (effect of random noise much larger than

systematic)
A simple dense network parameterised on Z tends to overtrain betore learning the full dependence on Z

Solution: Train two subnetworks independently for Z<1 and Z>1 and combine with a if-else

def combineModels (ModelUp, ModelDown):
inputl = Input(shape=(X syst train.shape[l],))

input2 = Input(shape=(1,))

selectModell = Lambda(lambda x: K.greater equal(x, K.constant(1l.)))(input2)
selectModel2 = Lambda(lambda x: K.less(x, K.constant(1l.))) (input2)
selectModell = Lambda(lambda x: K.cast(x, dtype='float32')) (selectModell)
selectModel2 = Lambda(lambda x: K.cast(x, dtype='float32'))(selectModel2)

outl = Multiply()([ModelUp([inputl,input2]), selectModell])
out2 = Multiply()([ModelDown([inputl,input2]), selectModel2])

out = Add()([outl, out2])
model = Model(inputs=[inputl,input2], outputs=out)
return model

aware model = combineModels (netAweUp model, netAweDown model)
aware model.compile(optimizer='RMSProp',

loss="'binary crossentropy',

metrics=[ 'accuracy'])
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