Detector Developments for the High Luminosity LHC Era

Lecture 3: Vertex Detectors

D. Bortoletto

The LHC and the High Luminosity LHC ERA

- The LHC is a discovery machine built to study
 - Electroweak symmetry breaking
 - The Higgs mechanism
 - The short comings of the standard model
 - Dark matter (SUSY or due to another theory)
 - Hierarchy problem
 - CP violation
- The discovery potential of the LHC can be enhanced by increasing its luminosity
- To distinguish between different new physics scenarios and solve the "LHC inverse problem" we need very large data sample
- To take advantage of this increase we must maintain or improve the performance of the LHC detectors including vertexing and tracking

Vertex Detectors Physics

Design requirements

- Precise vertex determination
 - b and tau identification
- Important role in pattern recognition/ track reconstruction
 - More layers? less material?
- Issues:
 - Material minimization
 - Thin/small beam-pipe
 - Ultra-light detectors
 - New powering concepts (serial, DC-DC)
 - High-precision detectors very close to IP
 - Ultra radiation hard detectors
 - Radiation hardness up to ~10¹⁶ 1MeV neutron/cm² @ innermost layers by phase 2
 - Many channels to reduce occupancy
 - High data rates⇒ Output rate at innermost layer = 320 MHz = 4 x LHC already in Phase 1
 - Triggering ?

The LHC vertex detectors

ATLAS: 3 layers + 2 disks with 80 M Pixels

CMS: 3 layers and 2 disks for 66 M pixels

LHCb: 176 k strips pileup Veto trigger, CO2 cooling

ALICE: 2 layers, 9.8 M pixels used in L0 triggering

D. Bortoletto

LHC Hybrid Pixel detectors

Hybrid pixel detectors meet LHC detectors need:

- High rate capability and radiation hardness to~ 10¹⁵ n_{eq}/cm²
- Charge generation in sensor, integration in FE-chip
- Require bump-bonding
- Trigger driven readout of individual hits
 - pn-diode $\rightarrow Q_{signal}$
 - amplification and filtering→Vout
 - Pixel storage: address, charge, BX
 - column-wise R/O
 - transfer information to End of Colum (wait for trigger)
- Current implementation:
 - 250 nm CMOS technology
 - Material budget ~2-3%X/X₀/layer
 - Resolution ~10 μm due to pixel size (50 μm×400 μm, 100 μm×150 μm)
 - ATLAS: Digital I/O
 - CMS: Analog I/O

esson learned from the pixels

CMS

- Some modules in barrel pixel were bad before installation. Difficult to replace a module
- The layout of the fibers and the connections at patch panels were difficult

- Power (CAEN Easy series)
 - Mechanical problems with connectors

ATLAS

- Aluminum tubes corroded during production and were replaced
- Leaks in custom low mass fittings
 - 3 inside the detector can not be accessed

- VCSEL LASER array response are temperature dependent (similar problem in CMS Analog opto Hybrids)
 - Add resistive heaters to ondetector optical boards to control temperature
- R&D must cover also these areas to built detectors that can maintain or improve the performance of the current detectors

The LHCb VELO-upgrade plan

- Run existing LHCb and collect 10 fb⁻¹ in 5 years at L = 2 x 10³² cm⁻²s⁻¹
- UPGRADE
 - Collect 100 fb⁻¹ in 5 years at L = 2 x 10³³ cm⁻²s⁻¹
- The full detector is composed of 26 stations.
- The modules on either side of the beam are staggered to create overlap regions.

- A 'station' is made of 8 sensor tiles.
 active area is near 100% (except small gaps).
 - Closest pixel is at 7.5 mm from the beam center.

D. Bortoletto

Alice Upgrade inner tracking system

- Present 6 detector layers based on three silicon technologies:
 - 2 layers SPD (pixels)
 - 2 layers SDD (Si Drift)
 - 2 layers SSD (Si strips)

Radii: 4, 7, 15, 24, 39, and 44 cm Total material budget of $7\%X_0$ (normal incidence) Pixel size 50 µm x 425 µm Beam pipe radius 2.98 cm

- 6/7 cylindrical layers
- First layer as close as possible to the interaction point
 - smaller and thinner beam-pipe (present 29/0.8mm)
 - goal: 20mm radius or smaller
- Extend the use of pixel detectors to larger radii (replace SDD, slowest det in ITS)
 - strips where pixels not affordable
 - re-use of the existing pixel and/or strip layers being considered
- Extremely low material budget, trigger capability, granularity, fast readout
- New mechanics and cooling
- Target dates defined by the LHC shutdown schedule: 2017-18
- Physics Goal: a factor of 2 improvement in impact parameter resolution
- Secondary goal: improve stand-alone tracking capability

D. Bortoletto ACAD

ATLAS phase 1 upgrade plans

- Insertable pixel B Layer (IBL) to Improve Physics performance of the present Pixel Detector:
 - Reduce material budget to an "aggressive" 50% of the present inner most pixel layer, i.e. <1.5% X/X₀ at η=0.
 - Have low R/O inefficiencies at LHC ultimate luminosity and above (i.e. 3x10³⁴ cm⁻²s⁻¹).
 - Increase radiation hardness by a factor of five to 5x10¹⁵ 1MeV neutrons/cm²
- Installation schedule, 2016

Current b -layer

• IBL

D. Bortoletto

CMS Phase 1 Plan

Phase 1

- Improve hit detection efficiency, track seeding, and pattern recognition at L=2x10³⁴ cm⁻²s⁻¹ (and 50 pile-up events):
 - Minimize data losses at high luminosity
 - Maximize 4-hit coverage over the full pseudorapidity range
- Improve track parameter resolution :
 - Minimize radius of innermost layer
 - Reduce passive material in the tracking region
- Use current CMS cabling and connections and simplify module production

- Main Features of the new detector:
 - 4 barrel layers and 3 endcap disks at each side
 - New readout chip with expanded buffers, embedded digitization and high speed data-links
 - CO2 two-phases cooling and displaced optical transceivers
 - Powering based on DC-DC converters

Material effects

 Transverse and longitudinal Impact parameter resolution as a function of η

The effect of the 18 innermost pixel layer cooling lines on the transverse and the longitudinal impact parameter is clearly seen

D. Bortoletto

CMS material reduction plans

Ultra-light support structure: BARREL

- 200 µm carbon fiber
- 4mm Airex foam filler
- Stainless steel tubes (1.5 mm OD, 50µm wall thickness)
- Innermost layer with reduced radius (39mm)
- Additional outermost layer at 160mm
- ~2x radial acceptance
- ~65% more pixels

The total weight of the 4 barrel layers plus supply tube within this *is* 7 kg, about a factor 2.4 less than the current BPIX detector with only 3 layers.

MS material reduction plans

- Half disks divided in inner and outer rings for easier replacement
- 1 type 8x2 ROC modules 18M -> 45M pixel

Ultra light support

- One ply of Carbon Fiber Reinforced Polymer on Thermal Pyrolytic Graphite as facing sheet.
 CF encapsulation on both sides of TPG,
 TPG has a high thermal conductivity (in-plane k = up to 1700 W/m-K) and low density (2.26 g/cc)

The weight of the new half-disk is estimated to be 420 g, to be compared with the present 607 g. Within $\eta < 2.5$, the total weight of each half cylinder, including the three half-disks, cables, and cooling lines, is estimated to be 1.82 kg.

CMS Pixel Material

Performance improvements

- Reduced material and larger lever (2x)arm improves track parameter and vertex resolution at High Level Trigger
- Iterative tracking can use seeding based on quadruplets & triplets
 - Reduce fake rate
 - Increasing tracking efficiency
 - Both critical for high pile-up events
- Reduced distance between outermost pixel layer and innermost strip layer ⇒ smaller track extrapolation
- 4x better p_T resolution
 - Both can reduced combinatorics and lead to faster pattern recognition
- Reduced material improves electron reconstruction and reduces fake tracks from photon conversions and nuclear interactions

CO2 cooling R&D

Implementation of CO2 cooling is critical to achieve reduction in material

• The pixel detector cooling uses miniature pipes involve a domain of CO2 heat transfer and two-phase flow for which there are few experiment measurements and poor agreement between experimental measurements and theory

ATLAS IBL Material reduction

- Developed new carbon foam material collaboration with industry (LBNL)
- Material is machineable, has low-density, high thermal conductivity, and strong.
- Baseline for all future ATLAS pixel mechanics designs. Can be applied in other future experiments.
- Current detector 3.5% X0 per layer
- Insertable B-Layer (IBL): current estimate 1.5% X0

Component	% X _o
beam-pipe	0.6
New BL @ R=3.2 cm	1.5
Old BL @ R=5 cm	2.7
L1 @ R=8 cm	2.7
L2 + Serv. @ R=12 cm	3.5
Total	11.0

Thinning of Hybrid pixels

Bonn and IZM

- Current flip chip technique: IZM solder SnAg
- Chip bow during flip chip
- New techniques using handle-wafers during flip chip and lift-off after flip chipping are needed
 - 3 methods studied so far with IZM Berlin

ATLAS pixel module with 90 µm thick FE-I2

- Not successful
 - thinning ok, but chips bent up at the corners, opposite to the End Of Column region
 - Bump bonds do not connect in this area

D. Bortoletto

Bonn and IZM

Thinning of Hybrid pixels

Process steps:

thinning of FE wafer

Mounting on glass carrier wafer using polyimide glue

Bumping process on FE frontside

Dicing of FE wafer and carrier wafer package

FE flip chip bonding to **sensor**

Laser exposure of chip backside

Carrier chip detach

90 µm

Glass carrier on Si test chip before laser exposure_25x

Glass carrier on Si testchip after laser exposure_25x

2x2 FE-I2 array, 90um, on dummy sensor Cross section cut of first column → all bumps are connected!!!

LHCb RF foil

- Provide separation from extreme-high-vacuum of LHC from Detector vacuum and Protects against RF effects
- Very diverse & severe requirements !
 - Vacuum tight.
 - Radiation hard.
 - Low mass. (dominant in X₀ contribution), but rigid
 - Electrical conductive (beam mirror currents and shield front-end electronics)
 - Thermally stable and conductive (heat load from beam)
- Material and manufacturing options:
 - Aluminium: 200-350 um thickness.
 - Formed by superplastic deformation as used in present foils.
 - CF composite, coated with Aluminium.
 - Could reduce X₀
 - Prototype work started (CMA, Tucson, AZ.)

D. Bortoletto

Pixel Readout R&D

- Hit inefficiency rises steeply with the hit rate
- Dead time due to congestion in doublecolumn readout
 - Example data loss of CMS PSI46 at 10³⁴ at 4 cm =3.8%
- Possible solution: more local in-pixel storage (130 nm !)
 - >99% of hits are not triggered → No need to move them

Current ATLAS CHIP FE-I3

- FE-I4 new digital architecture: local regional memories
- FE-I4 has smaller pixel size 50µm×250µm

FE-I4A R&D

- Store hits locally in region until L1T.
- Only 0.25% of pixel hits are shipped to EoC → DC bus traffic "low".
- Each pixel is tied to its neighbors -time info- (clustered nature of real hits). Small hits are close to large hits! To record small hits, use position instead of time.

Consequences:

- Spatial association of digital hit Lowers digital power consumption (below 10 µW / pixel at IBL occupancy).
- Physics simulation → Efficient architecture

A-Pixel Unit A-Pixel Unit

Shared Digital Part

Big chip (periphery on one side of module).
 Reduce size of periphery (2.8 mm→2 mm).
 Thin down FE chips (190 µm→90 µm).
 Thin down the sensor (250 µm →200 µm)?
 Less cables (powering scheme)?

- Big FE (~2x2cm!) with increased active area: from less than 75 % to ~90 %:
 → Reduced periphery; bigger IC; cost reduction (main driver is flip-chip costs per chip).
- No Module Controller Chip:
 - \rightarrow More digital functionality in the IC.
- Power:

→ Analog design for reduced currents; decrease of digital activity (digital logic sharing for neighbor pixels); new powering concepts. 8 metal layers [2 thick Alu.]
 → power routing.

D. Bortoletto

Good noise/radiation hardness for analog pixel

E-I4A R&D

Novel CHIP development setup

- Collaborate remotely using Cliosoft.com platform.
- Participating institutes:

Bonn: D. Arutinov, M. Barbero, T. Hemperek, A. Kruth, M. Karagounis. <u>CPPM</u>: D. Fougeron, F. Gensolen, M. Menouni.

Genova: R. Beccherle, G. Darbo.

<u>LBNL</u>: S. Dube, D. Elledge, J. Fleury (LAL), M. Garcia-Sciveres, D. Gnani, F. Jensen, A. Mekkaoui.

<u>NIKHEF</u>: V. Gromov, R. Kluit, J.D. Schipper, V. Zivkovic.

CMS Pixel ROC upgrade

- New chip 250 nm ROC based on present readout chip.
- In Phase 1 CMS will have:
 - Higher luminosity (2x10³⁴ cm⁻² s⁻¹ peak)
 - Same number of fibres to counting room (+ spares)
 - Higher data rates requires digital uplink
 →320 Mbit/s

 \rightarrow increase size of data buffers

ROC with digital readout & data buffers

- 160 Mbit/s: ROC to TBM
- Digital multiplexer in TBM

D. Bortoletto

CMS ROC upgrade

Radiation damage

 Bulk damage due to Non Ionizing Energy Loss (NIEL) causes displacement damage and built up of crystal defects

- Change of <u>effective doping concentration</u> (higher depletion voltage, under- depletion)
- Increase of <u>leakage current</u> (increase of shot noise, thermal runaway)
- > Increase of <u>charge carrier trapping</u> (loss of charge) most important effect at $\Phi > 10^{15}$ 1MeV neutron/cm²

Surface damage due to Ionizing Energy Loss (IEL) accumulation of positive in the oxide (SiO₂) and the Si/SiO₂ interface which affects interstrip capacitance (noise factor), breakdown behavior and therefore the detector performance

Signal/Threshold ratio is the quantity to watch

Silicon at the LHC R

R>20 cm Φ <2×10¹⁴ cm⁻² STRIPS: p-on-n

Al Strips P+ implants N Bulk

N+ Implants

- p-on-n sensors work after bulk type inversion if they are biased above depletion
 - Optimize design to achieve much higher V_{break} to operate at higher V_{bias}
 - Strip width/pitch ~ 0.25: reduce C_{tot} and therefore the noise
 - Optimal edge processing for stable high bias voltage operation

Performance of highly irradiated n-in-n

- Highly irradiated sensors operate up to 1kV
- No signal saturation with bias for Φ > 2×10¹⁵n_{eq}/cm²
 - Charge multiplication?
- Sensors exposed 2.8×10¹⁵n_{eq}/cm² yield > 7ke (at 800V)
 - High voltage is limited in both CMS and ATLAS by connectors, cables and power supplies to about 500-600 V
 - Increase in bias voltage and decrease in signal worsen spatial resolution
- Detector might become "useless" for impact parameter measurement although detection efficiency is still high (>95%)
 - Present operational limit 1.2×10¹⁵ N_{eq}
 (~250 fb⁻¹, 4cm layer) reachable
- Any higher demand requires a smaller pitch in r- Φ

Estimated integrated luminosity

Total Int (fb-1)

Exploring n-in-p pixels

Present CMS pixel detector uses n-in-n-sensors

- double sided processing (back side is structured)
- all sensor edges on ground
- most expensive part of the module (only bump bonding is more expensive)

• Exploring n-in-p sensors as alternative

- recent studies show radiation hardness
- single sided process promise prize benefit of factor 2-3
 - important since the CMS pixel area will be doubled in Phase 1
- Absence of guard rings on back side lead to the risk of (destructive) sparking to the ROC

n-in-n

Exploring n-in-p-pixels

- Applied V_{bias} to the sensor while ROC was grounded
- Breakdown occurs at ~500V
 - Grounded pad on ROC completely destroyed
 - Other pads also damaged
 - Voltage surprisingly high aluminium also evaporated on sensor backside

Passivation of the edges with glues

- Araldit used in CMS module production

 no change of break down voltage
- EPO-TEK 301 very liquid, fills part of the gap
 - break down at ~700V

PSI

D. Bortoletto

Thin edge R&D

- Planar n-in-n silicon sensors R&D for ATLAS IBL:
 - Similiar design as for ATLAS Pixel.
 - Radiation tolerance proven to several 10¹⁵n_{eq}/cm².
 - Main focus in development of slim edges.
- Planar n-in-p silicon sensors, thinned to 150µm:
 - Utilize the advantages of thinned sensors at a given maximum bias voltage
 - Standard 450µm wide inactive edge
 - Special passivation layer (BCB) needed for HV operation

3D detectors

Shorter drift distance and fast collection

- Lower depletion voltages
- Better radiation tolerance
- Sensor edge can be an electrode (Interesting for forward physics experiments)
- Inefficient in electrode area
- Non standard manufacturing
 - Deep Reactive Ion Etching (DRIE)
 - Support wafer essential to fabricate active edge and use plasma etching

• On going effort on industrialization:

 SINTEF (Oslo), FBK(Trento), CNM (Barcelona), VTT (Finland) 3D n⁺ p⁺ p⁺ p⁺ 50 µm 50 µm

n-columns p-columns

Active edge $\sim 4\mu$

wafer surface

n-type substrate

3D-DDTC+: passing through columns

Double-sided approach (3D-DDTC)

- Hole etching by DRIE
- Wide superficial diffusions around holes
- Contacts at surface only
- Passivation of holes with oxide:
 - Holes are empty (dead regions)
- Modified 3D-DDTC technology approach
- No support wafer, back-side accessible
- suitable for dual-readout pixel/strip
- Allows for "slim-edge" (~200 mm) detectors

 Two batches under fabrication at FBK one for ATLAS IBL prototypes

Double-sided 3D at CNM

Centre Nacional de Microelectrònica

- Columns etched from opposite sides of substrate and don't pass through full thickness
- All fabrication done in-house using Inductively Coupled Plasma etching
- ICP is a <u>reliable and repeatable</u> process (many successful runs)

Electrode fabrication:

- ICP etching of the holes: Bosch process, ALCATEL 601-E
- Holes partially filled with 3 µm Low
 Pressure Chemical Vapour Deposition poly
- 3. Doping with P or B
- 4. Holes passivated with TEOS SiO₂

D. Bortoletto

ACADEMIC TRAING

2E

O

V_{fd} ~5V

V_{fd} ~8V

p

V_{fd} ~20V

le n

. 103µm

O

56 µm

0

3E

μm

σ

4E

Signal/Threshold optimization

D42: Diamond

- Poly crystalline and single crystal
- Competitive (to Si), used in several radiation monitor detectors
- Large band gap (x5 Si)
 - no leakage current
 - no shot noise
- Smaller $\varepsilon_r (x \ 0.5 \ Si)$
 - lower input capacitance
 - lower thermal and 1/f noise
- Small Z=6 →large radiation length $(x2 in g/cm^2)$
- Narrower Landau distribution (by 10%)
- Excellent thermal conductivity (x15)
- Large w_i (x 3.6) \rightarrow smaller signal charge

- poly-CVD diamond wafers can be grown >12 cm diameter, >2 mm thickness.
- Wafer collection distance now typically 250µm (edge) to 310µm (center).
- 16 chip diamond ATLAS modules

sc-CVD sensors of few cm² size used as pixel detectors High quality scCVD diamond can collect full charge for thickness 880µm

- Industrialize metallization and bump-bonding
 - Full-size ATLAS pixel module assembled by industrial partner (IZM)

D. Bortoletto

Diamond

Single crystal diamond pixel detector

Preliminary Summary of Proton Irradiation

Diamond vendors

- DDL (E6) long-term supplier (pCVD and scCVD)
 - Reproducible material
 - Quote for 500 pcs (900 kGBP)
 - ATLAS-FE-I4 shaped sensors at hand 17.4 mm x 20.6 mm
 - Measured CCD between 240 and 260 μm
- New US producer II-VI Incorporated (pCVD)
 - Large company based in Saxonburg, PA
 - Interested in electronic grade diamonds to enrich their product line
 - Working closely with OSU on development for HEP
 - 300 USD/cm², 300 μm CCD, 300 μm thick
 - Spectacular CCD results
 - 300 μm at 0.5 V/μm !
- The Diamond Research Center at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan has recently fabricated one-inch square Mosaic Single Crystals.
- Diamond Materials (Freiberg) and the Laboratoire d'Ingénierie des Matériaux et des Hautes Pressions (LIMHP) in Paris.

D. Bortoletto

Monolithic Pixels

	LHC	ILC
Event rates	1GHz	1KHz
Beam Structure	25 ns, cont	340ns, 0.5% Duty Factor
Triggering L1 L3	40 MHz 100Hz	no hardware 15kHz → 100Hz
Radiation	1050Mrad/year	1050Krad/year
Resolution	10 µm	3 μm

- R&D (for ILC) ongoing for >10 years
 - DEPFET
 - recently (2008): baseline for a 2 layer detector for SuperBelle
 - Monolithic Active Pixels (MAPS-epi)
 - 2 (or 3) pixel layer detector for STAR@RHIC
 - EUDET
 - Layer 0 of the SuperB SVT
 - Monolithic Active Pixels (MAPS-Sol)

Belle New central pixel doublelayer using **DEPFET**

STAR Pixel upgrade (MIMOSTAR) total area: 0.16m²

D. Bortoletto

Monolithic devices

IPHC STRASBURG

Monolithic devices in standard deep submicron CMOS technology could yields many advantages: cost, material budget, yield, low capacitance of the collection electrode allowing very favorable power/signal-to-noise ratios

MIMOSA: 'traditional' monolithic detectors, MAPS-based with serial readout

- P-type low-resistivity Si with n-type "charge collectors"
 - signal created in epitaxial layer (low doping)
 - Q ~ 80 e-h/ μ m \rightarrow signal \leq 1000 e⁻
 - charge sensing through n-well/p-epi junction
 - Carriers propagate (thermally) to diode
- High granularity: pixel size \leq 10 μm x10 μm
- Reduced material budget: total thickness $\leq 50~\mu m$
- MIMOSA-22, binary output, integrated zero
 suppression 18.4 μ m pitch, 1152 columns x 576 rows, ~110ms readout time

- Very thin sensitive volume impact on signal magnitude (mV !)
- Sensitive volume almost undepleted impact on radiation tolerance & speed
- Commercial fabrication impact on sensing performances & radiation tolerance
- N_{WELL} used for charge coll. \rightarrow restricted use of P_{MOS} transistors

Monolithic Devices LePIX

- LePix: non-standard processing on high resistivity substrate
- Advanced CMOS deep submicron technologies (130 nm and beyond) can be implemented on ≥100 Wcm (~ 30µm depletion at 100 V)
 - Radiation hard
 - Charge collection by drift
- Low power consumption (target 20 mW/cm²)
- High production rate (20 m² per day...) and low cost per unit area (less than traditional detectors)
- High granularity
- Reduced material budget
- Prototype: test structures and matrices submission end of February 2010

Conclusions

- The construction of vertex detectors for the LHC upgrade is very challenging.
- R&D for Phase 1 is progressing well but it is important to keep in mind integration issues.
 - Material, cooling, cabling

Warning

- We do not have a proven solution for ultra-radiation sensors that can operate up to10¹⁶ neq/cm²
- We need ideas on how to implement pixel readout with lower thresholds
- "Ultimate goal remains a massless, cheap, infinite granularity, 100% hermetic and efficient, infinite bandwidth, long lifetime detector"

(Muenstermann, after Garcia-Sciveres)

- Further reading ICFA detector schools, previous academic training
 - Latest ICFA detector school
 - http://particulas.cnea.gov.ar/workshops/icfa/wiki/index.php/Main_Page

D. Bortoletto

ACADEMIC TRAING

0

CMS Experiment at LHC, CERN Data recorded: Sun Jul 18 11:13:22 2010 CEST Run/Event: 140379 / 136650665 Lumi section: 160

TOP

-0.3

0.3

0.2

0 1

0

-0.1

-0.2

-0.3

0.1

0.2

0.3

0.3

0.2

-0.1

0.5