TMVA Deep Learning Developments - Inference Code Generation for Recurrent Neural Networks Google Summer of Code 2021

Ahmat Hamdan Mentors: Lorenzo Moneta, Sitong An

Deep Learning inference

In deep learning, there are two processes

- Training
- Inference

Deep learning frameworks are not ideal for inference.

In the machine learning comunity there is a focus on fast inference.

That's why

- ONNX (Open Neural Network Exchange)
- Inference Engines (ONNX Runtime, TensorRT, ...) are under active development.

In the TMVA (Toolkit for Multivariable Analysis) team, a fast inference engine that

Takes ONNX files as input

and

Produces a C++ script as output

Is under development.

See https://github.com/root-project/root/pull/7544

Goal of the project

Goal

 Implementation of recurrent neural networks operators as defined by the ONNX standards in the code generation format

Deliverables

- Production ready implementation of RNN, LSTM and GRU in the code generation format.
- Optimized implementation for CPU (using BLAS).

Recurrent Neural Networks (RNN)

Powerful neural network architecture for

- Temporal processing
- Sequential learning

The architecture of RNN

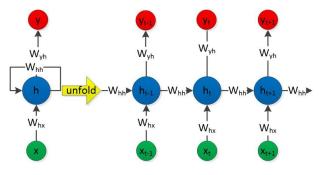


Figure: Jian Zheng 2017

RNN Equation

$$h_t = \sigma (x_t w_{xh}^T + h_{t-1} w_{hh}^T + b_h)$$

Where

- h_t, h_{t-1} : Hidden state
- x_t: Input matrix
- w_{xh}, w_{hh}: Weights
- *b_h*: Bias
- σ: Activation function
- *t*: Time step

Implementation of RNN 1/2

- The ROperator_RNN class is a derived from ROperator.
- The attributes fAttrActivationAlpha, fAttrActivationBeta, fAttrActivations, fAttrClip, fAttrDirection, fAttrHiddenSize and fAttrLayout.
- The names fNX, fNW, fNR, fNR, fNB, fNSequence_lens, fNInitial_h, fNY and fNY_h
- The shapes fShapeX, fShapeW, fShapeR, fShapeB, fShapeSequence_lens, fShapeInitial_h, fShapeY and fShapeY_h.
- The precision fType.

Implementation of RNN 2/2

- ROperator_RNN(...) is a constructor.
- TypeInference(...) infers the type of the tensors.
- ShapeInference(...) infers the shape of the tensors.
- Initialize(...) initializes the model.
- Generate(...) generates the code of the RNN operator.

LSTM Equation

$$i_t = \sigma(x_t w_{xi}^T + h_{t-1} w_{hi}^T + b_i)$$

$$f_t = \sigma(x_t w_{xf}^T + h_{t-1} w_{hf}^T + b_f)$$

$$o_t = \sigma(x_t w_{xo}^T + h_{t-1} w_{ho}^T + b_o)$$

$$\tilde{c}_t = \sigma(x_t w_{xc}^T + h_{t-1} w_{hc}^T + b_c)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$$

$$h_t = o_t \odot \phi(c_t)$$

Where

- *i_t*: Input gate
- *f_t*: Forget gate
- *o_t*: Output gate
- \tilde{c}_t, c_t : Cell state
- *h_t*, *h_{t-1}*: Hidden state

- *x_t*: Input matrix
- *w_{xi}*, *w_{xf}*, *w_{xo}*, ...: Weights
- b_i, b_f, b_o, b_c : Bias
- σ, ϕ : Activation functions
- t: Time step

Implementation of LSTM

- The ROperator_LSTM class is derived from ROperator.
- The attributes fAttrActivationAlpha, fAttrActivationBeta, fAttrActivations, fAttrClip, fAttrDirection, fAttrHiddenSize, fInputForget and fAttrLayout
- The names fNX, fNW, fNR, fNR, fNB, fNSequence_lens, fNInitial_h, fNInitial_c, fNP, fNY, fNY_h, and Y_c.
- The shapes fShapeX, fShapeW, fShapeR, fShapeB, fShapeSequence_lens, fShapeInitial_h, fShapeInitial_c, fShapeP, fShapeY, fShapeY_h and fShapeY_c.
- The precision fType.

GRU Equation

$$z_t = \sigma(x_t w_{xz}^T + h_{t-1} w_{hz}^T + b_z)$$

$$r_t = \sigma(x_t w_{xr}^T + h_{t-1} w_{hr}^T + b_r)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \phi(x_t w_{xh} + (r_t \odot h_{t-1}) w_{hh}^T + b_h)$$

Where

- *x_t*: Input matrix
- *z_t*: Update gate
- *r_t*: Reset gate
- h_t, h_{t-1} : Hidden state
- σ, ϕ : Activation functions
- $w_{xz}, w_{hz}, w_{xr}, w_{hr}, w_{xh}, w_{hh}$: Weights
- b_z, b_r, b_h : Bias
- *t*: Time step

Implementation of GRU

- The ROperator_GRU class is derived from ROperator.
- The attributes fAttrActivationAlpha, fAttrActivationBeta, fAttrActivations, fAttrClip, fAttrDirection, fAttrHiddenSize, fAttrLayout and fAttrLinearBeforeReset.
- The names fNX, fNW, fNR, fNR, fNB, fNSequence_lens, fNInitial_h, fNY and fNY_h.
- The shape of the tensors fShapeX, fShapeW, fShapeR, fShapeB, fShapeSequence_lens, fShapeInitial_h, fShapeY and fShapeY_h.
- The precision fType.

Parse the RNN, LSTM and GRU nodes

- make_ROperator_RNN(...) parses the RNN node
- make_ROperator_LSTM(...) parses the LSTM node
- make_ROperator_GRU(...) parses the GRU node

Thank you!

https://github.com/axmat/TMVAFastInferencePrototype https://github.com/axmat/TMVAInference