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14

Run-2 dataset resonant and non-resonant (NR) HH publications

Experiment Search ML use case

ATLAS HH → bb̄bb̄ (VBF, NR+res.) b-jet energy correction
ATLAS HH → bb̄ττ (NR+res.) Classification
ATLAS HH → bb̄γγ (NR+res.) Classification
ATLAS HH → bb̄`ν`ν (NR) Classification
CMS HH → bb̄bb̄ (ggF+VBF, NR) Classification & bkd estimation
CMS HH → bb̄bb̄ (res., boosted) Classification
CMS HH → bb̄bb̄ (VBF, NR, boosted) Classification & mbb̄ regression
CMS HH → bb̄ττ (res. hhS) Classification
CMS HH → bb̄γγ (ggF+VBF, NR) Classification
CMS HH → bb̄``νν (res.) Classification
CMS HH → bb̄```` (NR) Classification

Neural networks (NNs) are optimal for a single signal (backup) 3

Many problems more complex...

https://arxiv.org/abs/2001.05178
http://cdsweb.cern.ch/record/2777236
http://cdsweb.cern.ch/record/2759683
https://arxiv.org/abs/1908.06765
https://cds.cern.ch/record/2771912/
https://cds.cern.ch/record/2777083/
https://cds.cern.ch/record/2776802/
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-014/index.html
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-018/index.html
https://cds.cern.ch/record/2777173/
https://cds.cern.ch/record/2725691/


CMS Non-Resonant HH → bb̄bb̄ Search 2
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MVAs can be used to target multiple signal processes

This can be seen in CMS non-resonant (NR) HH → bb̄bb̄ search,
where 26–28% of ggF HH events contain additional jets which satisfy
the VBF HH category selection

A boosted decision tree (BDT) is used to separate ggF and VBF
HH signal events

∼ 96–97% of ggF HH events are categorised correctly 3
60% (80%) of SM (κ2V = 2) VBF HH events are categorised
correctly 3

This can be achieved in addition to background rejection using a
multi-output MVA 3

https://cds.cern.ch/record/2771912/


ATLAS H → bb̄`ν`ν Search Classifier 3
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ATLAS HH → bb̄`ν`ν search
uses a multi-output NN with 4
output nodes:

HH signal events
Top-quark
Z → ``
Z → ττ

35 input variables

Outputs combined: dHH =
ln[pHH/(pTop + pZ−`` + pZ−ττ )]

https://arxiv.org/abs/1908.06765
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CMS H → hhs → bb̄ττ search uses
a NN with 5 output nodes:

HH signal events
ττ
fake-τ
tt̄
Other smaller backgrounds

Fit performed to the maximum of
the NN outputs

Background categories constrain
systematic uncertainties 3
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Lesson 1: Multi-class or multiple MVAs can isolate multiple

signals and control background systematics

https://arxiv.org/abs/2106.10361
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CMS H → hhs → bb̄ττ search uses
a NN with 5 output nodes:

HH signal events
ττ
fake-τ
tt̄
Other smaller backgrounds

Fit performed to the maximum of
the NN outputs

Background categories constrain
systematic uncertainties 3
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Lesson 1: Multi-class or multiple MVAs can isolate multiple

signals and control background systematics

https://arxiv.org/abs/2106.10361


ATLAS HH → bb̄γγ Dual-MVAs for κλ Sensitivity 5
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Neural networks are optimal for a single signal
hypothesis, but mHH is highly dependant on κλ
→ MVA trained on a single signal hypothesis will

not be optimal for other signals 7

ATLAS HH → bb̄γγ search uses BDTs to
reject γγ, tt̄H, ggH and ZH backgrounds, in
m∗

bb̄γγ
categories trained on:

κλ = 10 HH signal for m∗
bb̄γγ

< 350 GeV

κλ = 1 HH signal for m∗
bb̄γγ

> 350 GeV

This maintains good sensitivity to both SM
and BSM signals 3

Lesson 2: Can maintain good SM and BSM sensitivity

using MVAs trained in mHH categories

https://cds.cern.ch/record/2759683/
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Parameterised Neural Networks 6
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arXiv:1601.07913
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PNN: family of NNs, connected by
continuous input parameter

Often superior performance to classic NN 3

Strong interpolation performance 3

Only have to train one MVA for multiple
signal regions 3

Parameterised neural networks used for
resonance-mass-dependant classification in
ATLAS HH → bb̄ττ search

https://arxiv.org/abs/1601.07913
https://arxiv.org/abs/1601.07913
http://cdsweb.cern.ch/record/2777236


PNN-Based κλ Sensitivity 7
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PNNs could be parameterised in κλ to maximise sensitivity to all
κλ scenarios 3

Many σ(HH) limits finely-spaced in κλ can then be set by fitting the
PNN outputs, these could then be compared with the expected cross
section to set κλ constraints

PNNs can also be used to profile systematic uncertainties 3

This should prove useful as we collect more data!

Lesson 3: PNNs can provide optimal sensitivity to a range of

resonant masses (or κλ/κ2V hypotheses)

https://arxiv.org/abs/2105.08742
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ATLAS HH → bb̄γγ Resonant Search BDTs 8
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ATLAS resonant HH → bb̄γγ search uses
BDTs for signal-background separation

Avoid sculpting by reweighting signal in
m∗

bb̄γγ
to match background during training

Separate BDTs trained to reject

γγ and tt̄γγ
Single Higgs boson events

Weighted quadrature sum of two BDT
outputs used, and weight optimised

This could be used to reduce systematic
uncertainties on total background 3
Systematic reduction could also be
achieved by up-weighting high-systematics
backgrounds in training 3

Lesson 4: Systematics can be mitigated using multiple

MVA outputs (or by weighting backgrounds in MVA training)

http://cdsweb.cern.ch/record/2759683/
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CMS Non-Resonant HH → bb̄γγ Search (1/2) 9
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CMS NR HH → bb̄γγ search is a ML tour de force!

Dedicated NN to reject tt̄H, training SM and BSM HH signals
against tt̄H background, based on topology-classifier architecture NN

Topology-classifier architecture uses feed-forward and LSTM layers
Hyperparameters optimised using Bayesian method

BDTs used to classify ggF HH signal against NR backgrounds
Mass dependence mitigated by using dimensionless kinematic
variables
Signal events weighted using inverse mass resolutions to use
information about resonant nature of Higgs boson decays
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https://arxiv.org/abs/2011.12373
https://arxiv.org/abs/1807.00083


CMS Non-Resonant HH → bb̄γγ Search (2/2) 10
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BDTs used to classify VBF HH signal events

Similar to ggF BDT in many ways
Separate BDTs for M̃X < (>) 500 GeV → sensitivity to (B)SM signals
Multi-class BDT to separate VBF HH signal from γγ+jets, γ+jets and
SM ggF HH backgrounds

BDTs used to isolate tt̄H process to simultaneously constrain κt
tt̄H NN output and BDT-based top-quark tagger input to this BDT
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CMS DeepAK8(-MD) H → bb̄ Tagger 11
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CMS uses the DeepAK8-MD mass-decorrelated X → bb̄ tagger,
e.g. in the HH → bb̄`ν`ν search

Multi-class X → bb̄ taggers, targeting: X = W /Z/H/t/other
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https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://cds.cern.ch/record/2777173/
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005


CMS Boosted VBF NR HH → bb̄bb̄: ParticleNet 12
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CMS VBF HH → bb̄bb̄ search uses ParticleNet to identify H → bb̄
candidates and estimate mbb̄

ParticleNet is a permutation-invariant graph-convolutional-NN
The classification algorithm is multi-class, and rejects multijet and tt̄
events
> 2× background rejection compared to DeepAK8-MD 3

Trained using dedicated samples with flat mX distribution and

reweighted mbb̄ and pbb̄T distributions to ensure ParticleNet is mX/bb̄

and pbb̄
T independent

Avoids sculpting background, allowing mX estimate to be used in
background estimation 3

Samples with flat distribution in mX and ln(pbb̄T ) are used to train mX

regression

Avoids biasing mX estimate 3
Generator-level soft drop mass is calculated for background processes

Lesson 5: Reweighted training data, dimensionless inputs and

adversarial trainings decorrelate MVA outputs from other variables

https://cds.cern.ch/record/2776802/
https://arxiv.org/abs/1902.08570
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Background Estimation in CMS NR HH → bb̄bb̄ Search 13
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CMS HH → bb̄bb̄ search uses ML in the background estimation

The multijet and tt̄ backgrounds are estimated using data, using
events in a 3 b-tag control region

Differences in several variables are addressed by reweighting the 3
b-tag events to match the 4 b-tag events using a BDT

The BDT is trained in data in a nearby mH1 −mH2 region
Separate BDTs are trained to test performance of reweighting by
separating reweighted and target events, and the area under the ROC
curve was always 0.5 3

The uncertainties deriving from the limited number of events in the 3
b-tag control regions are among the dominant uncertainties

The statistics in these regions could conceivably be enhanced, e.g.
using Generative Adversarial Networks

Lesson 6: ML can be used for background estimation

(and much more)

https://cds.cern.ch/record/2771912/
https://arxiv.org/abs/2008.06545
https://arxiv.org/abs/1406.2661
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Summary: Lessons Learned 14
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1 Multi-class or multiple MVAs can isolate multiple signals and control
background systematics

2 Can maintain good SM and BSM sensitivity using MVAs trained in
mHH categories

3 PNNs can provide optimal sensitivity to a range of resonant masses
(or κλ/κ2V hypotheses)

4 Systematics can be mitigated using multiple MVA outputs (or by
weighting backgrounds in MVA training)

5 Reweighted training data, dimensionless inputs and adversarial
trainings decorrelate MVA outputs from other variables

6 ML can be used for background estimation (and much more)
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Why Use MVAs for Classification? 15
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Output of neural network (NN) trained with a binary cross-entropy
(BCE) loss approximates the signal probability

Monotonically related to density ratio: fS(xi )/fB(xi )

Shape component of likelihood a standard mixture-model:

L(µ; {x}) ∝
N∏
i=1

[
µS

µS + B
fS(xi ) +

B

µS + B
fB(xi )

]
=

N∏
i=1

[fB(xi )]×
N∏
i=1

[
µS

µS + B

fS(xi )
fB(xi )

+

(
1− µS

µS + B

)]

This satisfies Fisher-Neyman factorisability criterion

→ NN output is a sufficient statistic 3



What about Systematics? 16
14

Mixture model in the presence of systematics:

L(µ,ν; {x}) ∝
N∏
i=1

[
µS

µS + B
fS(xi ,ν) +

B

µS + B
fB(xi ,ν)

]
=

N∏
i=1

[fB(xi ,ν)]×
N∏
i=1

[
µS

µS + B

fS(xi ,ν)

fB(xi ,ν)
+

(
1− µS

µS + B

)]

First term no longer constant in model parameters

→ NN output is no longer a sufficient statistic 7


