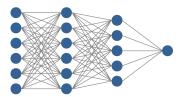
Machine Learning: Lessons Learned

Higgs Pairs Mini-Workshop, 30th September 2021 Elliot Reynolds



Run-2 dataset resonant and non-resonant	(NR)	ΗН	publications
---	------	----	--------------

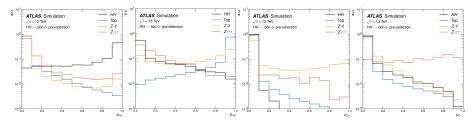
Experiment	Search	ML use case
ATLAS	$HH ightarrow bar{b}bar{b}$ (VBF, NR+res.)	<i>b</i> -jet energy correction
ATLAS	$HH ightarrow bar{b} au au$ (NR+res.)	Classification
ATLAS	$HH ightarrow bar{b}\gamma\gamma$ (NR+res.)	Classification
ATLAS	$HH ightarrow bar{b}\ell u\ell u$ (NR)	Classification
CMS	$HH \rightarrow b \bar{b} b \bar{b}$ (ggF+VBF, NR)	Classification & bkd estimation
CMS	$HH ightarrow bar{b}bar{b}$ (res., boosted)	Classification
CMS	$HH ightarrow bar{b}bar{b}$ (VBF, NR, boosted)	Classification & $m_{b\bar{b}}$ regression
CMS	$HH ightarrow bar{b} au au$ (res. hh_S)	Classification
CMS	$HH ightarrow bar{b}\gamma\gamma$ (ggF+VBF, NR)	Classification
CMS	$HH ightarrow bar{b}\ell\ell u u$ (res.)	Classification
CMS	$HH ightarrow bar{b}\ell\ell\ell\ell$ (NR)	Classification

- Neural networks (NNs) are **optimal** for a single signal (backup) ✓
- Many problems more complex...

2 14

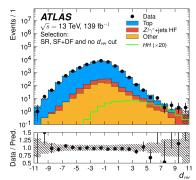
- MVAs can be used to target multiple signal processes
- This can be seen in <u>CMS non-resonant (NR) $HH \rightarrow b\bar{b}b\bar{b}$ search</u>, where 26–28% of ggF *HH* events contain additional jets which satisfy the VBF *HH* category selection
- A boosted decision tree (BDT) is used to separate ggF and VBF HH signal events
 - $\blacksquare~\sim$ 96–97% of ggF HH events are categorised correctly \checkmark
 - 60% (80%) of SM (κ_{2V} = 2) VBF HH events are categorised correctly ✓
- This can be achieved in addition to background rejection using a multi-output MVA

ATLAS $H \rightarrow b\bar{b}\ell\nu\ell\nu$ Search Classifier

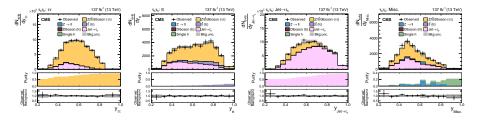


• ATLAS $HH \rightarrow b\bar{b}\ell\nu\ell\nu$ search uses a multi-output NN with 4 output nodes:

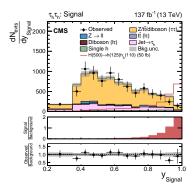
- HH signal events
- Top-quark
- $\blacksquare \ Z \to \ell \ell$
- $Z \to \tau \tau$
- 35 input variables
- Outputs combined: $d_{HH} = \ln[p_{HH}/(p_{Top} + p_{Z-\ell\ell} + p_{Z-\tau\tau})]$



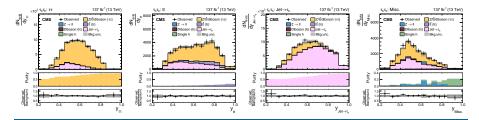
CMS $H \rightarrow hh_s \rightarrow b\bar{b}\tau\tau$ Search Classifier



- CMS $H \rightarrow hh_s \rightarrow b\bar{b}\tau\tau$ search uses a NN with 5 output nodes:
 - HH signal events
 - au au au
 - fake- τ
 - ∎ tī
 - Other smaller backgrounds
- Fit performed to the maximum of the NN outputs
 - Background categories constrain systematic uncertainties



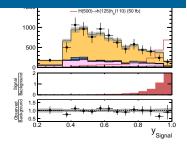
CMS $H ightarrow hh_s ightarrow bar{b} au au$ Search Classifier



Lesson 1: Multi-class or multiple MVAs can isolate multiple signals and control background systematics

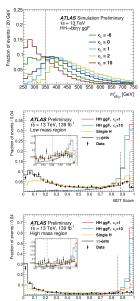
I III Signal events

- $\tau \tau$
- fake-au
- t t
- Other smaller backgrounds
- Fit performed to the maximum of the NN outputs
 - Background categories constrain systematic uncertainties



ATLAS $HH \rightarrow b\bar{b}\gamma\gamma$ Dual-MVAs for κ_{λ} Sensitivity

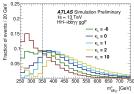
- Neural networks are optimal for a single signal hypothesis, but m_{HH} is highly dependant on κ_λ
 - \rightarrow MVA trained on a single signal hypothesis will not be optimal for other signals \bigstar
- ATLAS $HH \rightarrow b\bar{b}\gamma\gamma$ search uses BDTs to reject $\gamma\gamma$, $t\bar{t}H$, ggH and ZH backgrounds, in $m_{b\bar{b}\gamma\gamma}^*$ categories trained on:
 - $\kappa_{\lambda} = 10 \ HH$ signal for $m^*_{b\bar{b}\gamma\gamma} < 350 \ \text{GeV}$ • $\kappa_{\lambda} = 1 \ HH$ signal for $m^*_{b\bar{b}\gamma\gamma} > 350 \ \text{GeV}$
- This maintains good sensitivity to both SM and BSM signals



BDT Score

ATLAS $HH \rightarrow b\bar{b}\gamma\gamma$ Dual-MVAs for κ_{λ} Sensitivity

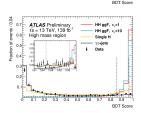
- Neural networks are optimal for a single signal hypothesis, but m_{HH} is highly dependent on κ_{λ}
 - \rightarrow MVA trained on a single signal hypothesis will not be optimal for other signals $\cancel{\times}$



Lesson 2: Can maintain good SM and BSM sensitivity using MVAs trained in m_{HH} categories

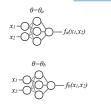
 $m_{b\bar{b}\gamma\gamma}$ categories trained on:

- $\kappa_{\lambda} = 10 \; HH$ signal for $m^*_{b\bar{b}\gamma\gamma} < 350 \; {
 m GeV}$
- $\kappa_{\lambda} = 1 \ HH$ signal for $m_{b\bar{b}\gamma\gamma}^* > 350 \ {
 m GeV}$
- This maintains good sensitivity to both SM and BSM signals

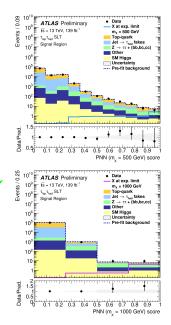


Parameterised Neural Networks

arXiv:1601.07913



- <u>PNN</u>: family of NNs, connected by continuous input parameter
- \blacksquare Often superior performance to classic NN \checkmark
- Strong interpolation performance \checkmark
- Parameterised neural networks used for resonance-mass-dependant classification in ATLAS $HH \rightarrow b\bar{b}\tau\tau$ search



PNNs could be parameterised in κ_{λ} to maximise sensitivity to all κ_{λ} scenarios \checkmark

• Many $\sigma(HH)$ limits finely-spaced in κ_{λ} can then be set by fitting the PNN outputs, these could then be compared with the expected cross section to set κ_{λ} constraints

PNNs can also be used to profile systematic uncertainties
 This should prove useful as we collect more data!

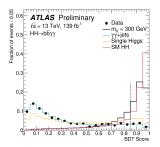
PNNs could be parameterised in κ_{λ} to maximise sensitivity to all κ_{λ} scenarios \checkmark

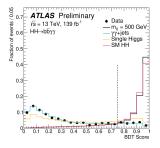
Lesson 3: PNNs can provide optimal sensitivity to a range of resonant masses (or $\kappa_{\lambda}/\kappa_{2V}$ hypotheses)

PNNs can also be used to profile systematic uncertainties
 This should prove useful as we collect more data!

ATLAS $HH ightarrow b ar{b} \gamma \gamma$ Resonant Search BDTs

- ATLAS resonant $HH \rightarrow b\bar{b}\gamma\gamma$ search uses BDTs for signal-background separation
- Avoid sculpting by reweighting signal in $m^*_{b\bar{b}\gamma\gamma}$ to match background during training
- Separate BDTs trained to reject
 - $\gamma\gamma$ and $t\overline{t}\gamma\gamma$
 - Single Higgs boson events
- Weighted quadrature sum of two BDT outputs used, and weight optimised
 - This could be used to reduce systematic uncertainties on total background
 - Systematic reduction could also be achieved by up-weighting high-systematics backgrounds in training ✓





ATLAS $HH ightarrow b ar{b} \gamma \gamma$ Resonant Search BDTs

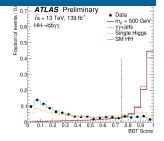
- ATLAS resonant $HH \rightarrow b\bar{b}\gamma\gamma$ search uses BDTs for signal-background separation
- Avoid sculpting by reweighting signal in m^{*}_{bbγγ} to match background during training

Lesson 4: Systematics can be mitigated using multiple MVA outputs (or by weighting backgrounds in MVA training)

 Weighted quadrature sum of two BDT outputs used, and weight optimised

C 1 1 66

- This could be used to reduce systematic uncertainties on total background ✓
- Systematic reduction could also be achieved by up-weighting high-systematics backgrounds in training



ATLAS Preliminary

√s = 13 TeV, 139 fb⁻¹

os⊑ HH→bbyy

Data

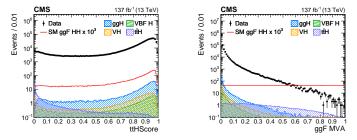
-mx = 300 GeV

Single Higgs

yy+jets

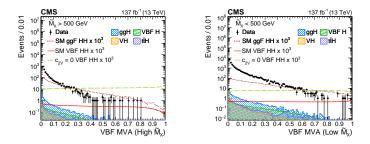
CMS Non-Resonant $HH \rightarrow b\bar{b}\gamma\gamma$ Search (1/2)

- <u>CMS NR $HH \rightarrow b\bar{b}\gamma\gamma$ search</u> is a **ML tour de force**!
- Dedicated NN to reject ttH, training SM and BSM HH signals against ttH background, based on topology-classifier architecture NN
 - Topology-classifier architecture uses feed-forward and LSTM layers
 - Hyperparameters optimised using Bayesian method
- BDTs used to classify ggF HH signal against NR backgrounds
 - Mass dependence mitigated by using dimensionless kinematic variables
 - Signal events weighted using inverse mass resolutions to use information about resonant nature of Higgs boson decays



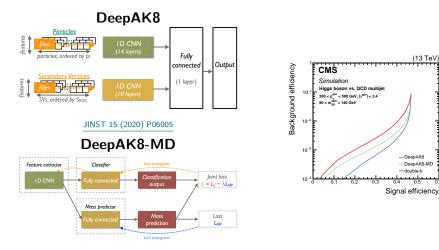
BDTs used to classify VBF HH signal events

- Similar to ggF BDT in many ways
- Separate BDTs for $ilde{M}_X < (>)$ 500 GeV ightarrow sensitivity to (B)SM signals
- Multi-class BDT to separate VBF HH signal from γγ+jets, γ+jets and SM ggF HH backgrounds
- BDTs used to isolate $t\bar{t}H$ process to simultaneously constrain κ_t
 - $t\bar{t}H$ NN output and BDT-based top-quark tagger input to this BDT



CMS DeepAK8(-MD) $H ightarrow bar{b}$ Tagger

- CMS uses the DeepAK8-MD mass-decorrelated $X \rightarrow b\bar{b}$ tagger, e.g. in the $HH \rightarrow b\bar{b}\ell\nu\ell\nu$ search
- Multi-class $X \rightarrow b\bar{b}$ taggers, targeting: X = W/Z/H/t/other



- <u>CMS VBF $HH \rightarrow b\bar{b}b\bar{b}$ search</u> uses <u>ParticleNet</u> to identify $H \rightarrow b\bar{b}$ candidates and estimate $m_{b\bar{b}}$
 - ParticleNet is a permutation-invariant graph-convolutional-NN
 - \blacksquare The classification algorithm is multi-class, and rejects multijet and $t\bar{t}$ events
 - \blacksquare $> 2\times$ background rejection compared to DeepAK8-MD \checkmark
- Trained using dedicated samples with flat m_X distribution and reweighted $m_{b\bar{b}}$ and $p_T^{b\bar{b}}$ distributions to ensure ParticleNet is $m_{X/b\bar{b}}$ and $p_T^{b\bar{b}}$ independent
 - Avoids sculpting background, allowing *m_X* estimate to be used in background estimation ✓
- Samples with flat distribution in m_X and $\ln(p_T^{b\bar{b}})$ are used to train m_X regression
 - Avoids biasing m_X estimate \checkmark
 - Generator-level soft drop mass is calculated for background processes

- <u>CMS VBF $HH \rightarrow b\bar{b}b\bar{b}$ search</u> uses <u>ParticleNet</u> to identify $H \rightarrow b\bar{b}$ candidates and estimate $m_{b\bar{b}}$
 - ParticleNet is a permutation-invariant graph-convolutional-NN
 - The classification algorithm is multi-class, and rejects multijet and $t\bar{t}$ events
 - \blacksquare $> 2\times$ background rejection compared to DeepAK8-MD \checkmark

Lesson 5: Reweighted training data, dimensionless inputs and adversarial trainings decorrelate MVA outputs from other variables

and p_T independent

- Avoids sculpting background, allowing *m_X* estimate to be used in background estimation ✓
- Samples with flat distribution in m_X and $\ln(p_T^{bb})$ are used to train m_X regression
 - Avoids biasing m_X estimate \checkmark
 - Generator-level soft drop mass is calculated for background processes

• CMS $HH \rightarrow b\bar{b}b\bar{b}$ search uses ML in the background estimation

- The multijet and tt backgrounds are estimated using data, using events in a 3 b-tag control region
- Differences in several variables are addressed by reweighting the 3
 b-tag events to match the 4 *b*-tag events using a BDT
 - The BDT is trained in data in a nearby $m_{H_1} m_{H_2}$ region
 - Separate BDTs are trained to test performance of reweighting by separating reweighted and target events, and the area under the ROC curve was always 0.5 ✓
- The uncertainties deriving from the limited number of events in the 3 b-tag control regions are among the dominant uncertainties
 - The statistics in these regions could conceivably be <u>enhanced</u>, e.g. using <u>Generative Adversarial Networks</u>

• CMS $HH \rightarrow b\bar{b}b\bar{b}$ search uses ML in the background estimation

- The multijet and tt backgrounds are estimated using data, using events in a 3 b-tag control region
- Differences in several variables are addressed by reweighting the 3

Lesson 6: ML can be used for background estimation (and much more)

separating reweighted and target events, and the area under the ROC curve was always 0.5 \checkmark

- The uncertainties deriving from the limited number of events in the 3 b-tag control regions are among the dominant uncertainties
 - The statistics in these regions could conceivably be <u>enhanced</u>, e.g. using Generative Adversarial Networks

- Multi-class or multiple MVAs can isolate multiple signals and control background systematics
- 2 Can maintain good SM and BSM sensitivity using MVAs trained in m_{HH} categories
- 3 PNNs can provide optimal sensitivity to a range of resonant masses (or $\kappa_{\lambda}/\kappa_{2V}$ hypotheses)
- Systematics can be mitigated using multiple MVA outputs (or by weighting backgrounds in MVA training)
- 5 Reweighted training data, dimensionless inputs and adversarial trainings decorrelate MVA outputs from other variables
- 6 ML can be used for background estimation (and much more)

Backup Slides

- Output of neural network (NN) trained with a binary cross-entropy (BCE) loss approximates the signal probability
 - Monotonically related to density ratio: $f_S(\mathbf{x}_i)/f_B(\mathbf{x}_i)$

Shape component of likelihood a standard mixture-model:

$$L(\mu; \{\mathbf{x}\}) \propto \prod_{i=1}^{N} \left[\frac{\mu S}{\mu S + B} f_{S}(\mathbf{x}_{i}) + \frac{B}{\mu S + B} f_{B}(\mathbf{x}_{i}) \right]$$

=
$$\prod_{i=1}^{N} \left[f_{B}(\mathbf{x}_{i}) \right] \times \prod_{i=1}^{N} \left[\frac{\mu S}{\mu S + B} \frac{f_{S}(\mathbf{x}_{i})}{f_{B}(\mathbf{x}_{i})} + \left(1 - \frac{\mu S}{\mu S + B} \right) \right]$$

■ This satisfies Fisher-Neyman factorisability criterion → NN output is a sufficient statistic ✓ Mixture model in the presence of systematics:

$$L(\mu, \nu; \{\mathbf{x}\}) \propto \prod_{i=1}^{N} \left[\frac{\mu S}{\mu S + B} f_{S}(\mathbf{x}_{i}, \nu) + \frac{B}{\mu S + B} f_{B}(\mathbf{x}_{i}, \nu) \right]$$

=
$$\prod_{i=1}^{N} \left[f_{B}(\mathbf{x}_{i}, \nu) \right] \times \prod_{i=1}^{N} \left[\frac{\mu S}{\mu S + B} \frac{f_{S}(\mathbf{x}_{i}, \nu)}{f_{B}(\mathbf{x}_{i}, \nu)} + \left(1 - \frac{\mu S}{\mu S + B} \right) \right]$$

■ First term no longer constant in model parameters → NN output is no longer a sufficient statistic ×