Chapter 1 – Introduction – Big Science, Breakthrough Innovation and Society

No sub headings

Chapter 2 - CHASING SUCCESS: THE ATLAS AND CMS EXPERIMENTS

2.1 Introduction
2.2 Considerations leading to the two complementary general-purpose experiments
 The Role of ALICE and LHCb Experiments
2.3 The conception of the experiments
 ATLAS
 CMS
2.4 The evolution and construction of the experiments
 Some specific comment to ATLAS
 Some specific comment to CMS
 Upgrades for the future high-luminosity phase of the LHC
2.5 Stories of successes or failures and lessons learnt
 2.5.1 CMS
 An example of complexity in construction
 An example of technological and economic evolution during the long period of construction
 2.5.2 Two examples from ATLAS (adapted from Ref. [15])
 Distributed construction of the complex magnet system
2.6 General challenges and lessons learnt
2.7 The human factor
2.8 Concluding Remarks

Chapter 3 - DESIGN AND ENGINEERING INNOVATION – Intricacies of Precision, Accuracy and Imagination of Creating Old and New LHC

1.0 Introduction
 Birth of LHC
2.0 The design of the LHC
3.0 Magnets and cryogenics
 3.1 Machine layout
 3.2 Civil engineering
Chapter 4 - Innovating Accelerator Technologies for Society

1. Introduction: relation between science and technology
2. Superconductivity: an accelerator technology for society
3. Technical Challenges
 3.1 Challenges of contracts with industry
 3.2 Challenges of collaborations with institutions and universities
 3.3 Case study on accelerator technology: superconducting electrical transmission
4. Safety aspects
5. Human factors contributing to success
6. Future technologies and application to society
7. Links of accelerator technology to society: climate change, archaeology and art
 7.1 Case study: Understanding our world. Informing climate change
 7.2 Case study: understand early human culture
 Culturally Modified Trees
 7.3 Accelerator technology for cultural preservation
8. Concluding remarks

Chapter 5 - Leapfrogging into the Future
5.1 Introduction
5.2 What we know
5.2 What we do not know
5.3 What the FCC integrated programme offers
5.4 A puzzling particle
5.5 Dark secrets
5.6 Boldly Going where only the Universe has gone Before
5.7 Marching in unity: a brief lesson from the history of physics
5.8 *Shaping a vision for a new research infrastructure for the 21st century*
5.9 Advancing new technologies for new discoveries
5.10 Lessons and opportunities
5.11 Big Science & Public investment in fundamental science
5.12 Coda
5.13 Concluding Remarks

CHAPTER 6 - COMPLEX SYSTEMS AND DESIGN THINKING – CERN and European Innovation Strategy

1.0 Introduction
2.0 Knowledge Creation, Complexity and Design
3.0 Big Science, Knowledge Diffusion and Social Learning Cycle archetypes
4.0 Approaches and Practices of Design Disciplines
5.0 Diffusion by Design
6.0 Case 1. Design for Particle Physics. IdeaSquare, CERN: an experimental innovation platform within the organisation
7.0 Case 2. Design for Astrophysics. Museum Exhibition: balancing integrity of scientific truth with a meaningful visitor experience
9.0 Conclusion
Chapter 7: Scientific Leadership and Collaboration — Lessons from Big Science Experiments

7.1 Leadership creating and shaping Big Science
7.2 Collective Leadership
7.3 Leadership Collisions
7.4 Leadership Models
7.5 Leadership as gender issue
7.6 Leadership from a machine or instrumentation builder
7.7 What is unique about the scientific leadership styles?
7.8 Shifting grounds from individual to collective leadership
7.9 Spokesperson and scientific leadership
7.10 Developing a leadership model appropriate to Big Science
7.11 Concluding remarks

Chapter 8 - Success and Potential Failures in Innovation Landscape — Lessons from Astrophysics

8.1 Overview
8.2 Big science infrastructure in Astrophysics
8.3 The European Southern Observatories’ Very Large Telescope (VLT)
8.4 Innovation in global astronomy seen down under

8.4.1 A standard model
8.4.2 Global teams
8.4.3 Distributed opportunities
8.4.4 Radar to Radio
8.4.5 Infrared comes of age
8.5 Gravitational Waves and Big Science
8.5.1 History
8.5.2 Gravitational Waves: A Cascade of Scientific Breakthroughs
8.5.3 The Complexity of Gravitational Wave Detection
8.5.4 The Criticality of Large-Scale Collaborations and Cooperation in Gravitational-Wave Astrophysics
8.6 Concluding Remarks

Chapter 9 - Medical applications of Accelerators - The impact on humanity and society

9.1 Historical context
9.2 Teletherapy
9.3 Molecular radiotherapy and diagnostic imaging
9.4 Radiation, all its 50 shades of GyE and relevance to human health
9.5 Radiation in Medicine
9.6 Accelerator enabled therapeutic techniques used in medicine
 9.6.1 X-ray and electron beam radiotherapy
 9.6.2 Light ion therapy: protons, helium and carbon ion therapy
9.7 Cyclotron based proton therapy
9.8 Particle and Heavy Ion Therapy
9.9 Neutron sources
9.10 Convergence and intersections of technologies (NCEPT, multi-ion plasma, radioisotope development with accelerators)
9.12 Concluding Remarks

Chapter 10: Fundamental Science as a Complex Human Enterprise

10.0 Introduction
10.1 The Social Value of Basic Science
10.2 Science and Leadership
 The struggle for reality and identity
 Leadership as organisational practices
 Science organisations
 The nature of the scientific process
 Science and human values

10.3 Art, design and science colliders- young Leonardo’s

10.4 Valuating Science and the need of a new paradigm

10.5 Concluding Remarks

Chapter 11 - Big Science and Social Responsibility to the Digital World

1.0 Big Science, big data and computing
2.0 CERN openlab: a Public-Private partnership for Scientific and Technological Innovation
 CERN openlab: main Concept
3.0 Brief History
4.0 Collaboration principles: a Win-Win scenario
5.0 Education
6.0 Innovation and Knowledge Sharing
7.0 The case for social responsibility in the digital age
8.0 Public Science and Public Benefits – Well Ordered science.
9.0 Public Health Surveillance in the digital world
10.0 Open Science and COVID-19 (CERN and EMBL)
 EOSC’s importance to EMBL, CERN and EIROforum
 CERN’s and EMBL’s activities within EOSC
11.0 Key messages from observing big science’s contributions to societal challenges in the digital world
12.0 Concluding Remarks

Chapter 12: Well-ordered Innovation and Entrepreneurship

12.0 Role of Entrepreneurship is shaping people and nations
 The Role of Big Science
 Enterprise as a Social Equity Mechanism
 Social Transformation
 Reliable Knowledge and Entrepreneurship
 Trust and Reliance on Scientific Community
Public Investment and Growth of Science
Enterprise Solutions

12.1 The Social Value of Basic Science: A Compass for Organizations
 Translation of Knowledge
 Social entrepreneurship and Big Science
 How CERN can translate science to social goods?

12.2 How to use big science ideas to social applications

12.3 From Fundamental Science Technologies to Business: Is it possible to Systematize Serendipity?
 Innovation Ecosystems: Systematizing Serendipity

12.4 Concluding remarks

Chapter 13 - Future Physics- Asian Perspectives

13.0 Introduction to the Chapter

13.1 Characteristics of Asia’s Physics Community

13.2 What are enabling human and organisation factors that are necessary to induce Asian collaborations in physics

13.3 What are the key fundamental features underlying future physics – lessons from CERN, Europe and USA

Chapter 14 - Social and Educational Responsibility of Science

14.1 Introduction

14.2 Knowledge and information flow in big science (SL)

14.3 Education strategies of large research infrastructures (CK)

14.4 The role of informal education in our classrooms (SG)

14.5 Global challenges facing science education (SG)
14.6 National and international science education networks (SG)

14.7 Coopetition – The collaborative aspects of large-scale science (SG)

14.8 Diversity and inclusion in big science (SG, VS & CK)

14.9 Implication of Big Science - Social Sciences perspectives and Future Skills (VS)

14.10 Science Enriching Other Disciplines Education (or Learning Experience)

14.11 Concluding Remarks

Chapter 15 – General Conclusion – all authors to contribute.