Formation, possible detection and consequences of highly magnetized compact stars

Banibrata Mukhopadhyay Indian Institute of Science (IISc) Bangalore

Collaborators (inter-continental): Srishty Aggarwal (IISc), Mukul Bhattacharya (Virginia-Tech/Penn-State), Tomasz Bulik (Warsaw), Upasana Das (Cactus Comm.), Debabrata Deb (IISc), Abhay Gupta (New South Wales), Gianluca Gregori (Oxford), Alexander Hackett (Cambridge), Surajit Kalita (IISc), Drisya Karinkuzhi (IISc), Tushar Mondal (IISc), Arnab Sarkar (IISERK/Cambridge), Armen Sedrakian (Frankfurt), Monika Sinha (IITJ), Christopher Tout (Cambridge), Fridolin Weber (SDSU/UCSD)

The Modern Physics of Compact Stars and Relativistic Gravity 2021 September 27-30, 2021, Yerevan, Armenia (Presented Virtually)

Highlights

□ Over last several years, there are lots of interest in massive compact objects, with their several direct/indirect evidences

□ GW190814 confirms existence of a compact star of mass 2.5-2.67 solar mass \rightarrow in so-called mass gap \rightarrow massive neutron stars?

□ Since last 15 years or so, at least a dozen evidences for SNeIa are, whose peculiarity lies with lightcurve, its over-luminosity and low ejecta velocity

□ Arguing super-Chandrasekhar progenitor white dwarf

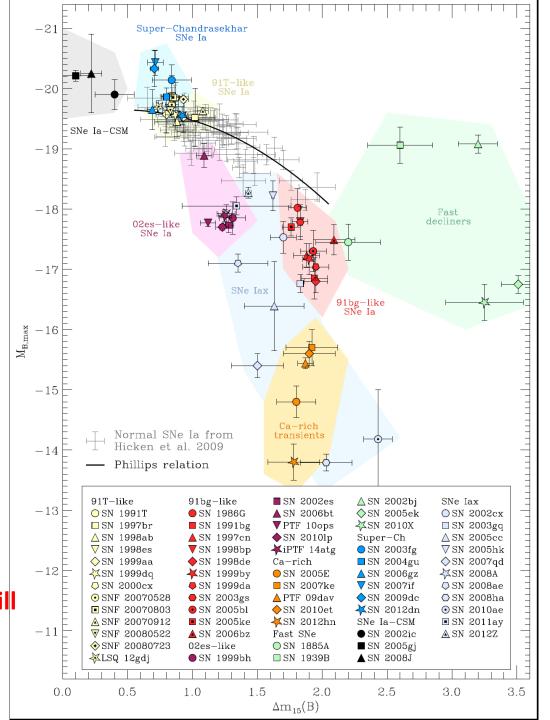
Approach: compact objects (1) with strong magnetic field, (2) in modified gravity, (2) matter encountering noncommutative physics at high density, (3) having Ungravity effect, (4) having net charge, (5) having many variant magnetic fields, anisotropic matter and field effects (*see the next talk*)

□ Since last one decade or so, we have been enlightening issue by magnetic field and modified gravity

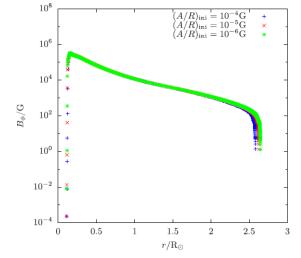
□ Other consequences: white dwarf pulsars, gravitational radiation, SGRs/AXPs, etc.

□ Brings super-Chandrasekhar white dwarfs in lime-light \rightarrow many groups joined working in the field \rightarrow not necessarily high magnetic field based idea

□ Leading to their mass-radius relation, e.g. for white dwarf, different than that of Chandrasekhar \rightarrow could be prolate/oblate spheroid


All SNeIa data

Taubenberger 2017


Handbook of Supernovae', edited by A. Alsabti and P. Murdin, Springer.

Present talk primarily focuses on magnetized white dwarfs ↓ Following talk by Debabrata Deb will

take over neutron/strange stars

How strong field could be in dynamo and geometry?

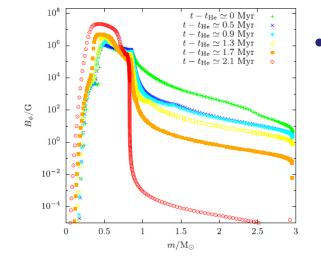
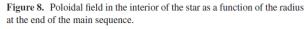



Figure 15. Toroidal field inside the star as a function of the mass coordinate at various times after helium exhaustion in the core, at time t_{He} , during the asymptotic giant phase.

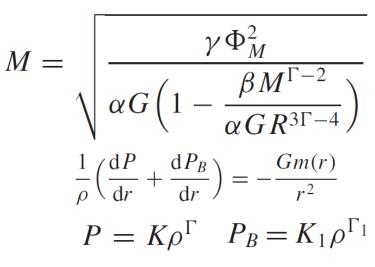
- Dynamo based simulations by STARS argue that at end of main sequence, star will have toroidally dominated magnetic fields
- Field decays from center to surface

 $\begin{array}{c} 10^{-5} \\ \vdots \\ 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 0 \\ 0.5 \\ r/R_{\odot} \end{array}$

 $(A/R)_{\rm ini} = 10^{-4} {\rm G}$ $(A/R)_{\rm ini} = 10^{-5} {\rm G}$ $(A/R)_{\rm ini} = 10^{-6} {\rm G}$

- For magnetic field ~ 10⁸ G for star of size 10⁶ km
- Flux ~ 10²⁰ G km²
- For a 1000km size white dwarf, $B \sim 10^{14} G$

Wickramasinghe, Tout & Ferrario, MNRAS 2014; Quentin & Tout, MNRAS 2018; BM, Sarkar & Tout, MNRAS 2020; Bhattacharya et al., MNRAS (submitted)


Figure 7. Toroidal field in the interior of the star as a function of the radius at the end of the main sequence.

 10^{-3}

 10^{-4}

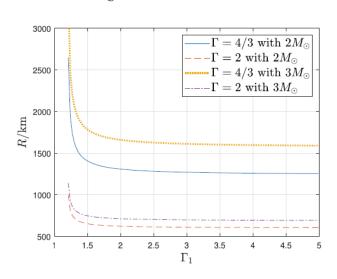
Virial theorem based argument

$$-\alpha \frac{GM^2}{R} + \beta \frac{M^{\Gamma}}{R^{3(\Gamma-1)}} + \gamma \frac{\Phi_M^2}{R} = 0,$$

Gravity Thermal Magnetic
$$\alpha = \frac{3(\Gamma_1 - 1)}{5\Gamma_1 - 6},$$

$$\beta = \left(1 + \frac{\Gamma - \Gamma_1}{(5\Gamma_1 - 6)(\Gamma - 1)}\right) \frac{3^{\Gamma}K}{(4\pi)^{\Gamma-1}},$$

$$\gamma = \frac{1}{6}.$$

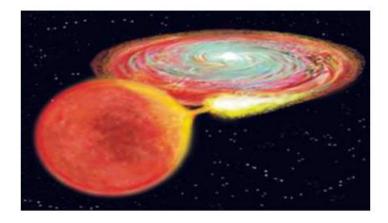


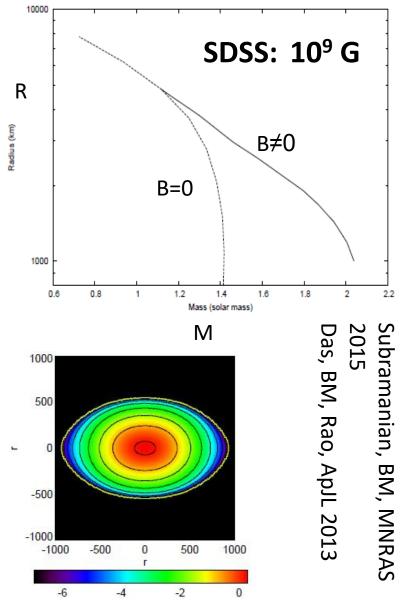
With, e.g., $\Gamma = 4/3$, $\Gamma_1 = 1.8$ $\alpha \downarrow$, $\beta \downarrow$, β / α fixed

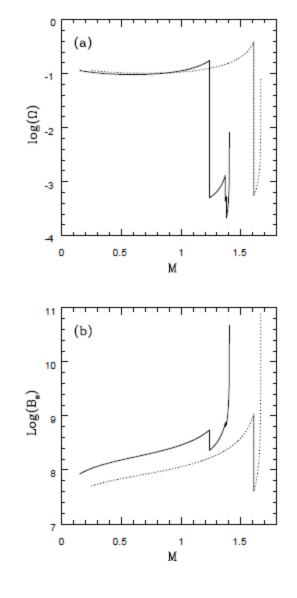
Equilibrium solution of mass $2-3M_{\odot}$ is possible depending on EoS (i.e. Γ or field)

This gives us more confidence to explore full-scale numerical calculation of stellar structure with strong field and finite temperature

BM, Sarkar, Tout, MNRAS 2021




Figure 8. Variation of the radius *R* with Γ_1 for the *Power Law* model with various Γ and total masses. In each case, $\Gamma = 4/3$ corresponds to $\overline{B} = 10^{14}$ G and $\Gamma = 2$ corresponds to $\overline{B} = 10^{16}$ G.


Fossil origin of strong field

Growth: mass of the white dwarf Increases due to accretion \rightarrow gravitational power increases over degeneracy pressure \rightarrow star contracts \rightarrow any initial seed magnetic field (B) increases as "B π r² " is conserved

Magnetostatic equilibrium: once B increases, total outward force further increases balancing gravitational force \rightarrow Repetition of above cycle

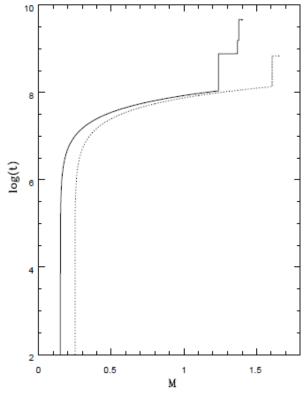
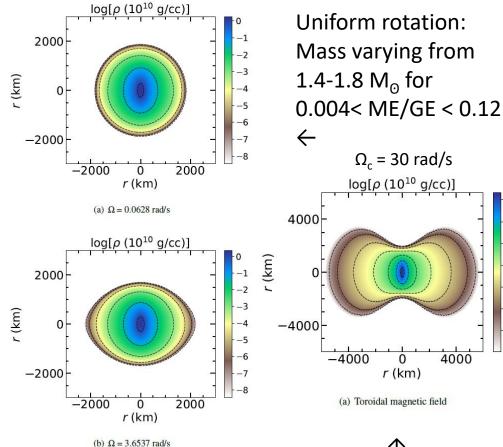
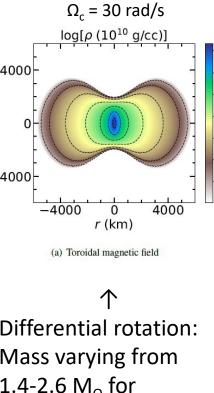


Figure 2. Time evolution of (a) angular velocity in \sec^{-1} , (b) magnetic field in G, as functions of mass in units of solar mass. The solid curves correspond to the case with $n = 3, m = 2.7, \rho = 0.05$ gm cm⁻³, l = 1.5 and dotted curves correspond to the case with $n = 3, m = 2, \rho = 0.1 \text{ gm cm}^{-3}, l = 2.5.$ Other parameters are $k = 10^{-14}$ CGS, $\dot{M} = 10^{-8} M_{\odot} \text{Yr}^{-1}$, $\alpha = 10$ degree and $R = 10^4$ km at t = 0.

Evolution of white dwarfs

Neglecting detailed CV physics


Figure 4. Time taken in Yr to evolve the mass and magnetic fields of white dwarfs shown in Fig. 2.


 $\hat{\Omega} = k \Omega^n$

Accretion phase

Spin-powered phase $\frac{GM(t)}{R(t)^2},$ $\Omega = \left[\Omega_0^{1-n} - k(1-n)(t-t_0)\right]^{\frac{1}{1-n}}$ $l\Omega(t)^2 R(t) =$ $I(t)\Omega(t)$ constant, $B_s = \sqrt{\frac{5c^3 I k \Omega^{n-m}}{R^6 \sin^2 \alpha}},$ $B_s(t)R(t)^2$ = constant, $-\frac{GM}{R^2} = \frac{1}{\rho} \frac{d}{dr} \left(\frac{B^2}{8\pi}\right) |_{r=R} \sim -\frac{B_s^2}{8\pi R\rho},$ n=m=3: dipole

BM, Rao, Bhatia, MNRAS 2017

-2

-5

-6

Rotating Magnetized White Dwarfs

ME/GE, KE/GE are in accordance with Braithwaite 2009; Komatsu et al. 1989

Density contours for purely toroidal field configuration with different angular velocity and $A^2 \sim 10^5$ $A^{2}(\Omega_{c}-\Omega) = \frac{(\Omega-\omega)r^{2}\sin^{2}\theta e^{2(\beta-\nu)}}{1-(\Omega-\omega)^{2}r^{2}\sin^{2}\theta e^{2(\beta-\nu)}}$

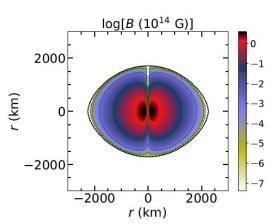
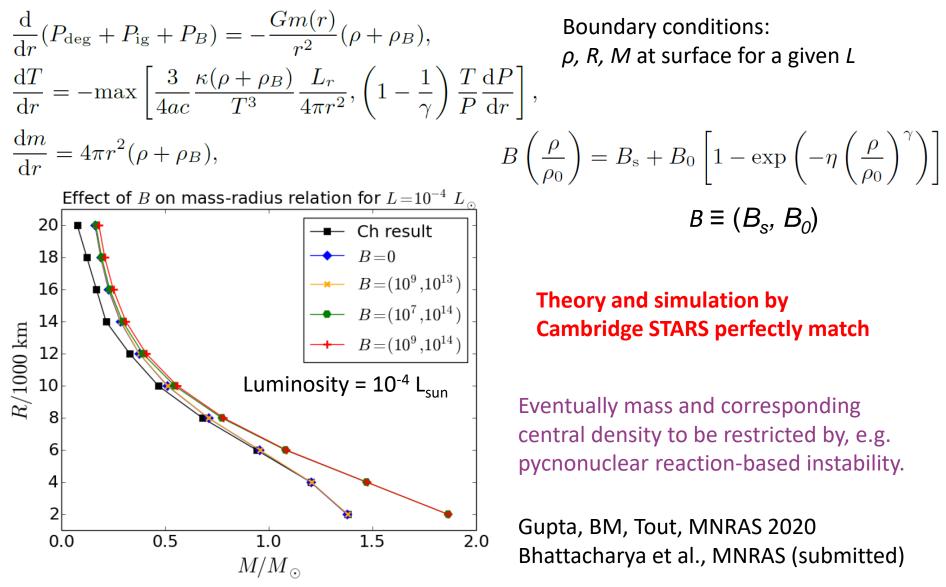
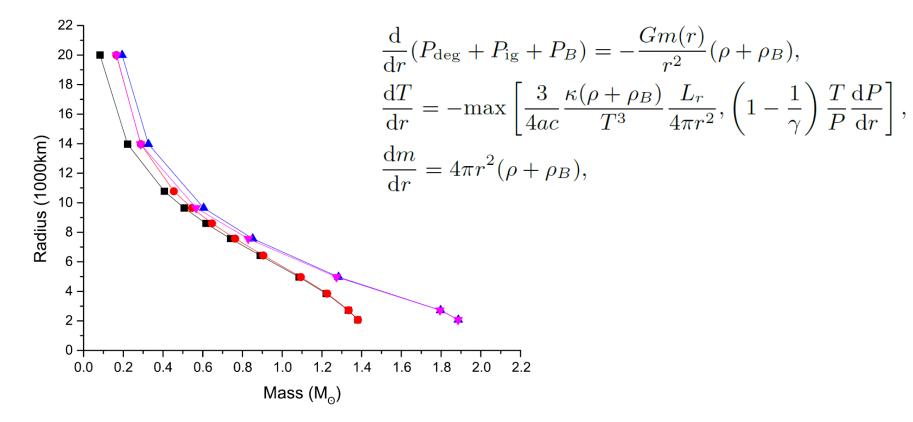



Figure 2. Density isocontours of uniformly rotating white dwarf with toroidal magnetic field.



Differential rotation: Mass varying from 1.4-2.6 M_☉ for 0.004< ME/GE < 0.14


Simulated by XNS code

Nonrotating B-WDs in finite temperature

Magnetostatic balance and photon diffusion equations:

From conservation of total energy: presence of magnetic effect at the expense of thermal effect

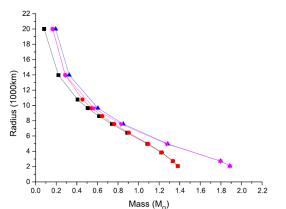
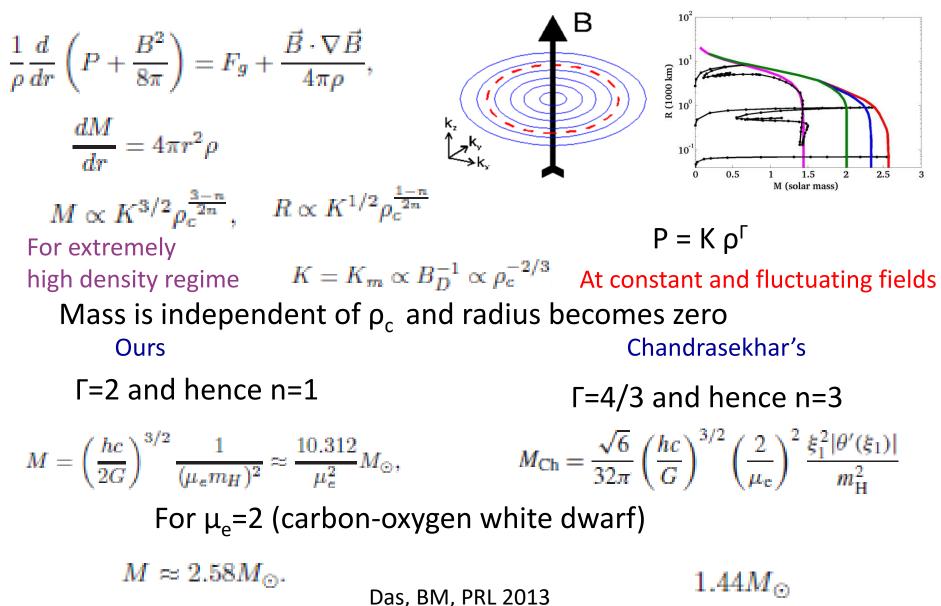


Figure 5. The effect of magnetic field optimizing luminosity to attempt to match with Chandrasekhar's mass-radius relation (black squares), for $(B_s, B_0) = (10^9, 10^{14})$ G (magenta downward triangles), while the lines with red circles and blue upward triangles represent the results with $L = 10^{-4} L_{\odot}$ for $(B_s, B_0) = (0, 0)$ and $(10^9, 10^{14})$ G respectively. All cases correspond to dT/dr = 0 below the interface radius. See Table 3 for specific luminosities.

Gupta, BM, Tout, MNRAS 2020

From conservation of total energy: presence of magnetic effect at the expense of thermal effect


$R/1000{\rm km}$	$(B_{\rm s}, B_0)/{\rm G}$	L/L_{\odot}	M/M_{\odot}	$M_{ m original} / { m M}_{\odot}$	$ ho_{\rm c}/10^6{\rm gcm^{-3}}$	$ ho_{\rm c}^{\rm original}/10^6{\rm gcm^-}$
20	$(10^9, 10^{14})$	8×10^{-6}	0.166	0.165	0.106	0.0983
20	$(10^7, 10^{14})$	7×10^{-5}	0.166	0.165	0.095	0.0983
13.965	$(10^9, 10^{14})$	10^{-6}	0.287	0.288	0.3934	0.4095
13.965	$(10^7, 10^{14})$	3×10^{-5}	0.289	0.288	0.3854	0.4095
9.645	$(10^9, 10^{14})$	10^{-12}	0.566	0.545	2.29	2.36
9.645	$(10^7, 10^{14})$	10^{-12}	0.551	0.545	2.121	2.36
7.57	$(10^9, 10^{14})$	10^{-12}	0.829	0.763	7.873	7.738
7.57	$(10^7, 10^{14})$	10^{-12}	0.818	0.763	7.7563	7.738
4.968	$(10^9, 10^{14})$	10^{-16}	1.273	1.094	57.19	55.35
4.968	$(10^7, 10^{14})$	10^{-12}	1.270	1.094	56.35	55.35
2.7215	$(10^9, 10^{14})$	10^{-16}	1.794	1.335	720.89	686.96
2.7215	$(10^7, 10^{14})$	10^{-12}	1.793	1.335	718.62	686.96
2.068	$(10^9, 10^{14})$	10^{-16}	1.886	1.381	2473.8	1962
2.068	$(10^7, 10^{14})$	10^{-16}	1.886	1.381	2462.4	1962

Very low luminosity: dim

Gupta, BM, Tout, MNRAS, 2020

Obtaining new limit: spirit of Chandrasekhar Quantum (EoS) effect: Constant or fluctuating fields

Effects of cooling and Ohmic and Hall decay

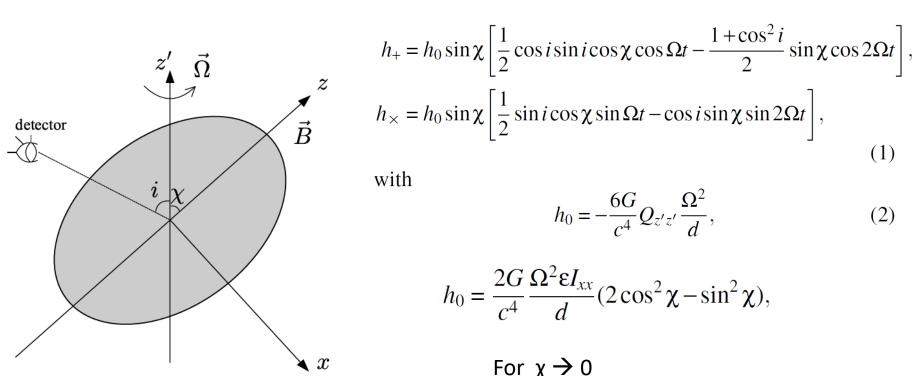
$$L = -\frac{d}{dt} \int c_{v} dT = (2 \times 10^{6} \text{ erg/s}) \frac{Am_{\mu}}{M_{\odot}} \left(\frac{T}{K}\right)^{7/2}$$

$$(T/K)^{-5/2} - (T_{0}/K)^{-5/2} = 2.406 \times 10^{-34} \tau/s$$
Effect of cooling and *B* decay on mass-radius
$$\frac{dB}{dt} = -B \left(\frac{1}{t_{Ohm}} + \frac{1}{t_{Amb}} + \frac{1}{t_{Hall}}\right)$$

$$\stackrel{\text{relation considering L suppression}{\stackrel{\text{relation considering L suppression}} \stackrel{\text{ch result}}{\stackrel{\text{relation considering L suppression}} \stackrel{\text{tohm} = (7 \times 10^{10} \text{ yr}) \rho_{c,6}^{1/3} R_{1/2}^{1/2} (\rho_{avg}/\rho_{c,10})}{_{t_{Hall}} = (5 \times 10^{10} \text{ yr}) l_{8}^{2} B_{0,14}^{-1} T_{c,7}^{2} \rho_{c,10}}$$

$$\stackrel{\text{tohm} = (7 \times 10^{10} \text{ yr}) l_{8}^{2} B_{0,14}^{-1} T_{c,7}^{2} \rho_{c,10}}{_{t_{Hall}} = (5 \times 10^{10} \text{ yr}) l_{8}^{2} B_{0,14}^{-1} T_{c,7}^{2} \rho_{c,10}}$$

$$\stackrel{\text{the mass remains}}{_{t_{Hall}} = 0} \stackrel{\text{tohm} = 0}{_{t_{Hall}} \stackrel{\text{tohm} = 0}{_{t_{Hall}} = 0} \stackrel{\text{tohm} = 0}{_{t_{Hall}} \stackrel{\text{tohm} = 0}{_{t_{Hall}}$$


Table 3. The effects of magnetic fields on the B-WD luminosity in order for the magnetised mass-radius relation to match with the non-magnetised relation. The initial field at t = 0 is kept fixed at $B = (10^9, 10^{14})$ G for all the radii listed here. The topmost entry for each radius is for the initial time t = 0 whereas the bottom two entries list the corresponding parameters for $t = \tau = 10$ Gyr after including the cooling rate and magnetic field decay over time. While we evaluate the magnetic fields assuming that Ohmic dissipation is the dominant process for the top entries of $\tau = 10$ Gyr, for the bottom entries, we assume that Hall drift is the primary process for the central field decay to $B_0 \gtrsim 10^{12}$ G below which Ohmic dissipation dominates.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$R/1000 \mathrm{~km}$	$t/{ m Gyr}$	$t_{ m HO}/ au$	$B_{\rm s}/{ m G}$	$B_0/{ m G}$	L/L_{\odot}	$M_{B=0}/M_{\odot}$	M/M_{\odot}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.0	0		10 ⁹	10^{14}	10^{-16}	1.378	1.865
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10		4.58×10^8			1.377	$1.478 \\ 1.542$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.0	0		10^{9}	10^{14}	10^{-16}	1.204	1.469
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10		2.78×10^8			1.201	$\begin{array}{c} 1.218 \\ 1.201 \end{array}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6.0	0		10^{9}	10^{14}	10^{-16}	0.956	1.074
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		10		1.65×10^8			0.951	$0.951 \\ 0.951$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.0	0		10^{9}	10^{14}	10^{-12}	0.709	0.762
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		10		$9.86 imes 10^7$			0.699	$0.699 \\ 0.699$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.0	0		10^{9}	10^{14}	10^{-12}	0.512	0.527
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10		$6.02 imes 10^7$	$\begin{array}{c} 6.02 \times 10^{12} \\ 6.18 \times 10^{10} \end{array}$		0.496	$0.496 \\ 0.496$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.0	0		10^{9}	10^{14}	$7 imes 10^{-8}$	0.376	0.376
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10		$3.69 imes 10^7$	3.69×10^{12} 3.75×10^{10}		0.354	$0.354 \\ 0.354$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.0	0		10^{9}	10^{14}	$2 imes 10^{-6}$	0.286	0.286
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10		3.06×10^7			0.262	$0.262 \\ 0.262$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.0	0		10^{9}	10^{14}	4×10^{-6}	0.228	0.228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10		$2.00 imes 10^7$			0.204	$0.204 \\ 0.204$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.0	0		10^{9}	10^{14}	5×10^{-6}	0.190	0.190
		10		1.87×10^7	$\begin{array}{c} 1.87 \times 10^{12} \\ 1.88 \times 10^{10} \end{array}$		0.165	$0.165 \\ 0.165$
	20.0	0		10^{9}	10^{14}	$7 imes 10^{-6}$	0.164	0.164
$10 9.97 \times 10^{4} 0.138$		10	$0 \\ 3.70 \times 10^{-4}$	2.97×10^7	$\begin{array}{c} 2.97 \times 10^{12} \\ 2.98 \times 10^{10} \end{array}$	10^{-5} 10^{-5}	0.138	$\begin{array}{c} 0.138\\ 0.138\end{array}$

$$t_{\rm Ohm} = (7 \times 10^{10} \text{ yr}) \rho_{c,6}^{1/3} R_4^{1/2} (\rho_{\rm avg}/\rho_{\rm c})$$
$$t_{\rm Hall} = (5 \times 10^{10} \text{ yr}) l_8^2 B_{0,14}^{-1} T_{\rm c,7}^2 \rho_{\rm c,10}$$

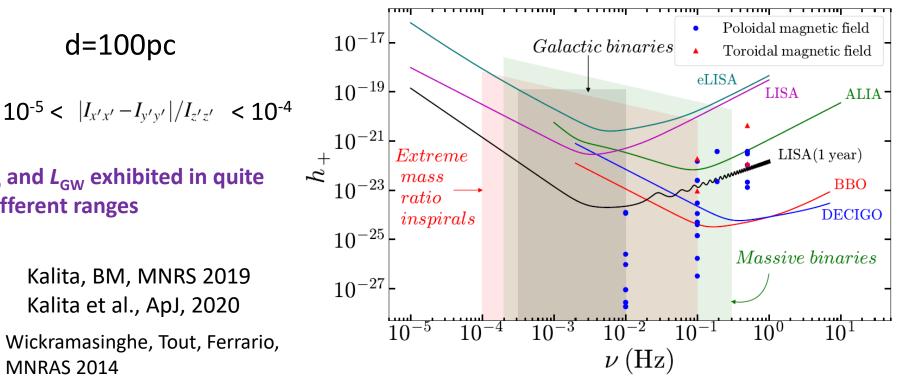
Continuous Gravitational Wave from B-WDs

Signal emitted by a tri-axial compact star rotating around a principle axis of inertia is characterized by the amplitude

Consider small χ approximation cases

Small χ assures applicability of results from *XNS/LORENE* codes

$$h_0
ightarrow rac{4G}{c^4} rac{\Omega^2 \epsilon I_{xx}}{d}$$


BM, Rao, Bhatia, MNRAS 2017 Kalita, BM, MNRAS 2019 Kalita et al., ApJ, 2020; MNRAS 2021

Toroidally (centrally) dominated B-WDs with poloidal surface fields:

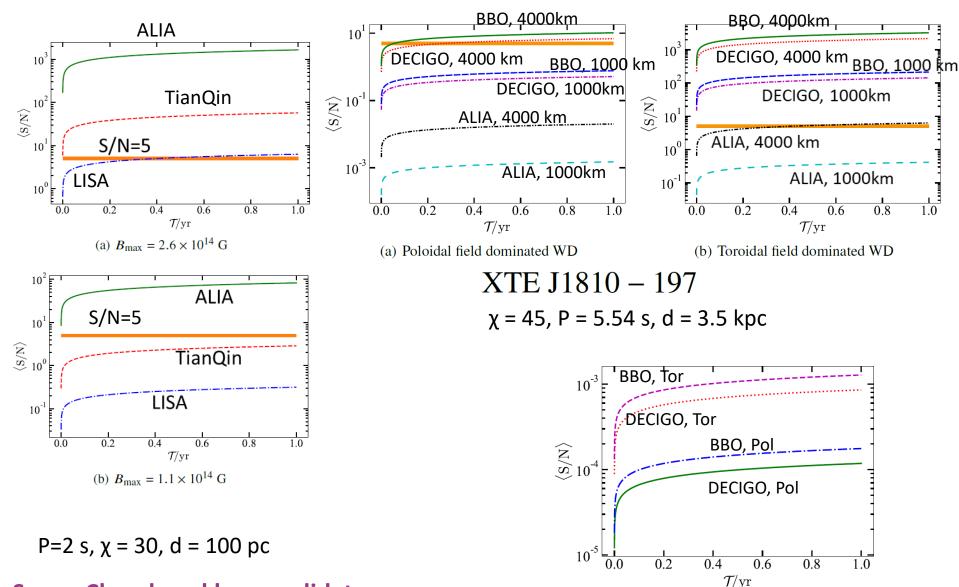
B_{cent} (Tor) $\ge 10^{14}$ G, B_{cent} (Pol) ~ 10^{12} G, B_{surf} (Pol) $\le 10^{10}$ G

Table 5. WDs possessing toroidal magnetic field for $\rho_c = 2 \times 10^{10} \text{ g cm}^{-3}$. Here B_{max} is the strength of the maximum magnetic field in the WD and R_E is the equatorial radius. t_{vl} means the timescale is very large.

$ \begin{array}{c} M\\ (M_{\odot}) \end{array} $	R_E (km)	$B_{\rm max}$ (G)	P (s)	ME/GE	KE/GE	$L_{\rm GW}~({\rm erg/s})$	h_0	t_{10} (year)
1.71	2095.4	2.6×10^{14}	2.0	1.0×10^{-1}	5.4×10^{-3}	3.1×10^{39}	1.7×10^{-20}	t_{vl}
1.44	1315.7	1.1×10^{14}	2.0	1.0×10^{-2}	2.7×10^{-3}	2.6×10^{35}	4.6×10^{-22}	t_{vl}
1.67	1767.6	2.6×10^{14}	10.0	1.0×10^{-1}	2.0×10^{-4}	2.3×10^{36}	7.5×10^{-22}	t_{vl}
1.43	1253.7	$1.1 imes 10^{14}$	10.0	1.0×10^{-2}	1.0×10^{-4}	6.3×10^{32}	3.7×10^{-23}	t_{vl}

 $L_{\rm D}$ and $L_{\rm GW}$ exhibited in quite different ranges

Powers of magnetized rotating white dwarfs

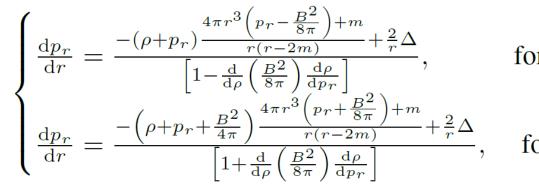

Behaving/Modelled like rotating dipole:

$$\frac{d(\Omega I_{z'z'})}{dt} = -\frac{2G}{5c^5} \left(I_{zz} - I_{xx} \right)^2 \Omega^5 \sin^2 \chi \left(1 + 15 \sin^2 \chi \right) - \frac{B_p^2 R_p^6 \Omega^3}{2c^3} \sin^2 \chi \ F(x_0),$$
(6)

$$I_{z'z'}\frac{d\chi}{dt} = -\frac{12G}{5c^5} \left(I_{zz} - I_{xx}\right)^2 \Omega^4 \sin^3 \chi \cos \chi - \frac{B_p^2 R_p^6 \Omega^2}{2c^3} \sin \chi \cos \chi \ F(x_0),$$
(7)

Kalita et al., ApJ, 2021

GW S/N for various compact objects


Super-Chandrasekhar candidate

Kalita et al., ApJ, 2021

(c) NS with radius 14 km

White dwarf with anisotropic effects

$$\frac{\mathrm{d}m}{\mathrm{d}r} = 4\pi \left(\rho + \frac{B^2}{8\pi}\right) r^2, \qquad p_r = \frac{\pi m_e^4 c^5}{3h^3} \left[x \left(2x^2 - 3\right) \sqrt{x^2 + 1} + 3\mathrm{sinh}^{-1}x\right],$$
$$\rho = \frac{8\pi \mu_e m_H \left(m_e c\right)^3}{3h^3} x^3,$$

$$\Delta = \begin{cases} \kappa \frac{(\rho + p_r) \left(\rho + 3 p_r - \frac{B^2}{4\pi}\right)}{\left(1 - \frac{2m}{r}\right)} r^2, \\ \kappa \frac{\left(\rho + p_r + \frac{B^2}{4\pi}\right) \left(\rho + 3 p_r + \frac{B^2}{2\pi}\right)}{\left(1 - \frac{2m}{r}\right)} r^2, \end{cases}$$

for RO,

for TO.
$$\Delta = p_t - p_r - B^2/8\pi$$
 for TO

 $\Delta = p_t - p_r + B^2/8\pi \text{ for RO},$ for RO,

for TO,

Deb, BM, Weber, ApJ, 2021

White dwarf with anisotropic effects

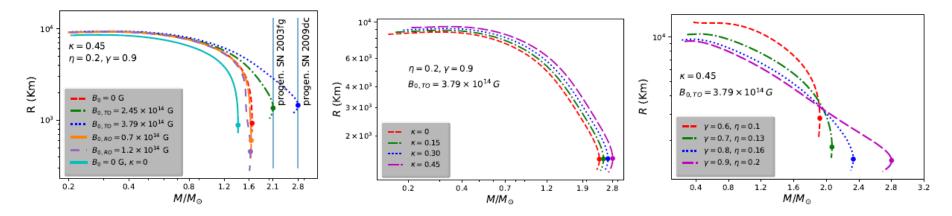


Figure 5. Variation of the total mass in the units of solar mass (M/M_{\odot}) with the total radius (R) of the stars for (a) varying B_0 and $\kappa = 0.45$ (left panel), (b) varying κ and $B_0 = 3.79 \times 10^{14} G$ (middle panel) and (c) varying η and γ , where $B_0 = 3.79 \times 10^{14} G$ and $\kappa = 0.45$ (right panel). Solid circles represent maximum possible mass for the stars.

Deb, BM, Weber, ApJ (to be submitted)

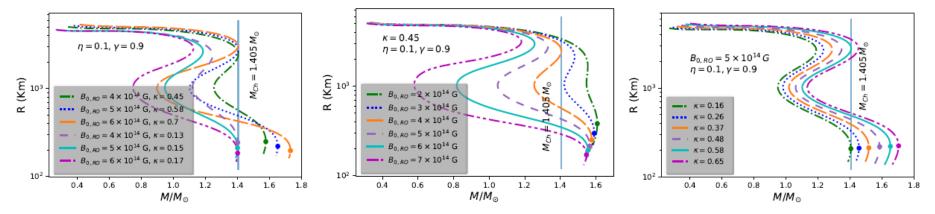


Figure 6. Variation of the total mass in the units of solar mass (M/M_{\odot}) with the total radius (R) of the stars for (a) varying B_0 and κ (left panel), (b) varying B_0 , where $\kappa = 0.45$ (middle panel) and (c) varying κ , where $B_0 = 5 \times 10^{14} G$ (right panel). Solid circles represent maximum possible mass for the stars.

Summary and Conclusions

- Highly magnetized, stable white dwarfs (B-WDs) and neutron stars have a variety of implications, including enigmatic peculiar over-luminous SNela
- Numerical simulation of Cambridge STARS argue B-WDs to be toroidally (centrally) dominated with lower surface (maybe dipole) fields
- > New, generic, mass limit of white dwarfs seems to be more than $2M_{\odot}$
- > They are triaxial, determined by their stable equilibria conditions
- They are difficult to observe or rare, due to decaying fields, hence not remained massive longer, and/or fast losing pulsar nature, and/or low luminosity
- They could be very good candidates for LISA (1 year integration), but also for Einstein Telescope and future DECIGO/BBO missions
- Hence, appropriate mission in GW astronomy and otherwise, e.g. radio astronomy, should be planned to probe them

Representative References

- 1. U. Das, BM, PRD, 042001, 2012
- 2. U. Das, BM, PRL, 071102, 2013
- 3. U. Das, BM, JCAP, 06, 050, 2014
- 4. S. Subramanian, BM, MNRAS, 454, 752, 2015
- 5. BM, A. R. Rao, JCAP, 05, 007, 2016
- 6. BM, A. R. Rao, T. S. Bhatia, MNRAS, 472, 3564, 2017
- 7. M. Bhattacharya, BM, S. Mukerjee, MNRAS, 477, 2705, 2018
- 8. S. Kalita, BM, MNRAS, 490, 2692, 2019
- 9. A. Gupta, BM, C. A. Tout, MNRAS, 496, 4191, 2020
- 10. BM, A. Sarkar, C. A. Tout, MNRAS, 500, 763, 2021
- 11. Deb, BM, Weber, ApJ (accepted for publication), 2021