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Highlights

C Over last several years, there are lots of interest in massive compact objects, with their
several direct/indirect evidences

C GW190814 confirms existence of a compact star of mas&.BBsolar mas8, in socalled mass gap
massive neutron stars?

C Since last 15 years or so, at least a dozen evidenc&Nelaare, whose peculiarity lies witightcurve
its overluminosity and low ejecta velocity

C Arguing supeChandrasekhar progenitor white dwarf

C Approach: compact objectd) with strong magnetic field, (%) modified gravity, (2) matter encountering
noncommutative physics at high density, (3) hawmgravityeffect, (4) having net charge, (5) having man
variant magnetic fields, anisotropic matter and field effestsg(the next talk

C Since last one decade or seg have beerenlightening issue by magnetic field and modified gravity

C Other consequencesvhite dwarf pulsars, gravitational radiation, SGRs/AXPs, etc.

C Brings supethandrasekhar white dwarfs lime-light A many groups joined working in the fiedd not
necessarily high magnetic field based idea

C Leading to theimassradius relation, e.g. for white dwarf, different than that of Chandraselar
could be prolate/oblate spheroid



All SNeladata

Taubenberger 2017

Handbook of Supernovae', edited
by A. Alsabti and P. Murdin, Springer.

Present talk primarily focuses on
magnetized white dwarfs
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field could be in dynamo and geometry?
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Virial theorem based argument
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Figure 8. Variation of the radius R with I'y for the Power Law model with
various [" and total masses. In each case. I' = 4/3 corresponds to B = 104G

and I" = 2 corresponds to B = 10'6 G.
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Fossil origin of strong field
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Figure 2. Time evolution of (a) angular velocity in sec™!, (b)
magnetic field in G, as functions of mass in units of solar mass. The
solid curves correspond to the case with n =3, m = 2.7, p = 0.05
Fim cm_ﬂ: [ = 1.5 and dotted curves correspond to the case with
n=3m=2 p=101gm em~—3, I = 2.5. Other parameters are
E=10-1 QGs, M = ID‘ﬁJ’L.I'::.::"r'r". o = 10 degree and R = 104
km at £t = 0.
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Figure 4. Time taken in Yr to evolve the mass and magnetic

fields of white dwarfs shown in Fig. 2. Q — kQ”
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Figure 2. Density isocontours of uniformly rotating white dwarf
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Mass varying from
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Nonrotating BWDs In finite temperature

Magnetostatic balance
and photon diffusion equations:
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Theory and simulation by
Cambridge STARS perfectly match

Eventually mass and corresponding
central density to be restricted by, e.g.
pycnonuclear reactiobased instability.

Gupta, BM, Tout, MNRAS 2020
Bhattacharya et al., MNRAS (submitted)



From conservation of total energyresence of
magnetic effect at the expense of thermal effect
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Figure 5. The effect of magnetic field optimizing luminosity to attempt
to match with Chandrasekhar’s mass—radius relation (black squares), for
(Bs, Bp) = (107, 10'4)G(magenta downward triangles), while the lines
with red circles and blue upward triangles represent the results with
L =10"*Lg for (Bs, By) = (0, 0) and (10°, 10'"*)G respectively. All
cases correspond to d7'/dr = 0 below the interface radius. See Table 3 Gupta, BM, TOUt, MNRAS 2020

for specific luminosities.



From conservation of total energypresence of
magnetic effect at the expense of thermal effect

Very low luminosity: dim

Gupta, BM, Tout, MNRAS, 2020



