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Introduction & motivation

The structure of a neutron star



Introduction & motivation

Compact star binaries

Compact stars are natural laboratories which allow us to study the properties of nuclear
matter under extreme physical conditions (strong gravity, strong magnetic fields, etc.).

The recent detection of gravitational and electromagnetic waves originating from black
hole or neutron star mergers motivates studies of compact binary systems.

Various physical processes in the compact binary systems can be modelled in the
framework of general-relativistic hydrodynamics simulations.

Transport coefficients are key inputs in hydrodynamic modelling of compact star mergers
as they measure the energy dissipation rate in hydrodynamic evolution of matter.

The bulk viscosity might affect the hydrodynamic evolution of mergers by damping the
density oscillations which can affect the form of the gravitational signal.

Aim and novelty of the work

We extend our previous study of bulk viscosity of hot npe matter from weak processes to
include muons which appear in significant amounts above the nuclear saturation density.

We improve pur previous calculations including properly all relativistic corrections to the
spectrum of nucleons in the relevant β-equilibration rates.

At temperatures T ≥ 5 MeV neutrinos/natineutrinos are trapped in neutron star matter
and they affect strongly the bulk viscosity.



Introduction & motivation

Relativistic hydrodynamics and bulk viscosity

Hydrodynamic state of a relativistic system is described by means of the
energy-momentum tensor and the particle current which obey the conservation laws

∂µTµν = 0, ∂µNµ = 0.

For ideal, i.e., non-dissipative fluids

Tµν0 = εuµuν − p∆µν , Nµ0 = nuµ,

and the system of conservation laws is closed by an equation of state p = p(ε, n).
For dissipative fluids with velocity gradients

Tµν = εuµuν − (p + Π)∆µν + πµν , Nµ = nuµ.

The bulk viscous pressure is given by

Π = −ζθ, θ = ∂µuµ.

Thus, the bulk viscosity ζ describes dissipation in the case where pressure falls out of
equilibrium on uniform expansion/contraction.



Weak processes and the bulk viscosity

Weak processes in npeµν matter

The simplest weak-interaction processes among baryons are the direct Urca processes

n� p + e− + ν̄e (neutron e−decay),

p + e− � n + νe (electron capture),

n� p + µ− + ν̄µ (neutron µ−decay),

p + µ− � n + νµ (muon capture).

In addition, we have the following leptonic processes

µ− � e− + ν̄e + νµ (muon decay),

µ− + νe � e− + νµ (neutrino scattering),

µ− + ν̄µ � e− + ν̄e (antineutrino scattering).

In β-equilibrium we have µn + µνl = µp + µl. Out of equilibrium there is a chemical
imbalance

µ∆l ≡ µn + µνl − µp − µl 6= 0, l = {e, µ}.



Weak processes and the bulk viscosity

Rates of the Urca processes

The rate of the neutron decay n→ p + l− + ν̄l is given by [̄f (k) = 1− f (k)]

Γn→plν̄ =

∫
dΩk|MUrca|2f (kn) f̄ (kν̄l ) f̄ (kl) f̄ (kp) (2π)4 δ(4)(kp + kl + kν̄l − kn).

The rate of the lepton capture p + l− → n + νl is given by

Γpl→nν =

∫
dΩk|MUrca|2f (kl) f (kp) f̄ (kn) f̄ (kνl ) (2π)4 δ(4)(kp + kl − kνl − kn).

The squared matrix element of Urca processes is
[
G2 = G2

F cos2 θc(1 + 3g2
A)
]

∑
|MUrca|2 ' 32G2

F cos2 θc

[
(1 + gA)2(ke · kp)(kνl · kn)

]
.

In β-equilibrium Γn→plν̄ = Γplν̄→n ≡ Γn↔plν̄ , Γpl→nν = Γnν→pl ≡ Γpl↔nν .

For small departures from equilibrium µ∆l � T

Γn→plν̄ − Γplν̄→n = λn↔plν̄ µ∆l , Γnν→pl − Γpl→nν = λpl↔nν µ∆l ,

with the expansion coefficients

λn↔plν̄ =
Γn↔plν̄

T
, λpl↔nν =

Γpl↔nν

T
.



Weak processes and the bulk viscosity

Density oscillations in neutron-star matter

Consider now small-amplitude density oscillations in baryonic matter with frequency ω

nB(t) = nB0 + δnB(t), nLl (t) = nLl0 + δnLl (t), δnB(t), δnLl (t) ∼ eiωt.

The baryon and lepton number conservation laws in the co-moving frame imply

iωδnB + θnB0 = 0, iωδnLl + θnLl0 = 0, θ = div v.

The shifts in the particle densities nj(t) = nj0 + δnj(t) lead to chemical imbalances

µ∆e = (Ann − Apn)δnn − (App − Anp)δnp − Aeeδne + Aνeνeδnνe , Aij = ∂µi/∂nj,

µ∆µ = (Ann − Apn)δnn − (App − Anp)δnp − Aµµδnµ + Aνµνµδnνµ .

The off-diagonal susceptibilities Anp and Apn are non-zero because of the cross-species
strong interaction between neutrons and protons.

Let us clarify how how the lepton reactions affect the bulk viscosity from the Urca
processes. Typically, we deal with two limiting cases:

fast lepton-equilibration limit, where the lepton process rates are much higher than Urca process rates

λlep � λUrca; this implies µ∆e = µ∆µ ≡ µ∆ ⇒ problem with one degree of freedom.

slow lepton-equilibration limit, where the lepton process rates are much lower than Urca process rates:

λlep � λUrca; in this case µ∆e 6= µ∆µ ⇒ problem with two degrees of freedom.



Weak processes and the bulk viscosity

Fast lepton-equilibration limit λlep � λUrca

The rate equations which take into account the loss and gain of particles read

iωδnn(t) + θnn0 = −(λe + λµ)µ∆(t),

iωδne(t) + θne0 = +λeµ∆(t) + IL,

where λe = λn↔peν̄ + λpe↔nν and λµ = λn↔pµν̄ + λpµ↔nν .
The quantity IL is the summed rate of the three lepton reactions, which arises as a result
of an almost vanishing shift µ∆e − µ∆µ � µ∆ but cannot be neglected because the
relevant λ-coefficient can be very large.
Solving these equations we can compute the pressure out of equilibrium

p = p(nj) = p(nj0 + δnj) = peq + δp′,

where the non-equilibrium part of the pressure - the bulk viscous pressure, is given by

Π ≡ δp′ =
∑

j

∂p
∂nj

δn′j =
∑

ij

ni0Aijδn′j .

The bulk viscosity is then identifined from Π = −ζθ

ζ(ω) =
C2

B
γ

ω2 + γ2

with susceptibilities B =
∂µ∆

∂nn

∣∣∣∣
nB

, C = nB
∂µ∆

∂nB

∣∣∣∣
Yn

, and relaxation rate γ = (λe + λµ)B.



Weak processes and the bulk viscosity

Slow lepton-equilibration limit λlep � λUrca

In this case IL ' 0, and the rate equations read

iωδnn(t) + θnn0 = −λeµ∆e (t)− λµµ∆µ (t),

iωδne(t) + θne0 = +λeµ∆e (t).

Solving these equations and computing the off equilibrium-pressure leads to

ζ(ω) =
λeλµ

[
λe(C1 − a1C2)2 + λµ(C2 − a2C1)2

]
+ ω2(λeC2

1 + λµC2
2)/(An + Ap)2

[λeλµ(An + Ap)(a1a2 − 1)− ω2/(An + Ap)]2 + ω2(λea1 + λµa2)2
,

with a1 = 1 + (Ae + Aνe )/(An + Ap) and a2 = 1 + (Aµ + Aνµ )/(An + Ap).
If the muon contribution is neglected (λµ = 0) this result reduces to

ζe(ω) =
C2

1

A1

γe

ω2 + γ2
e
, γe = λeA1.

contribution by electrons and muons, respectively.
In the neutrino-transparent matter we deal with the low-frequency limit ω � λiAi
(typically, ω ' 1 kHz in neutron star mergers)

ζ =
λe(C1 − a1C2)2 + λµ(C2 − a2C1)2

λeλµ(An + Ap)2(a1a2 − 1)2
.



Results

Beta-equilibrated nuclear matter

We use the density functional theory approach to the nuclear matter, which is based on
phenomenological baryon-meson Lagrangians of the type proposed by Walecka and others.

The Lagrangian density of matter is given by

L =
∑

N

ψ̄N

[
γµ
(

i∂µ − gωNωµ −
1
2

gρNτρµ

)
− m∗N

]
ψN +

∑
l

ψ̄l(iγµ∂µ − ml)ψl

+
1
2
∂µσ∂µσ −

1
2

m2
σσ

2 − U(σ)−
1
4
ωµνωµν +

1
2

m2
ωω

µωµ −
1
4
ρµνρµν +

1
2

m2
ρρ
µρµ.

The pressure of baryonic matter is given by

PN =
∑

N

2JN + 1
6π2

∫ ∞
0

k4 dk
(k2 + m∗2

N )1/2

[
f (EN

k − µ
∗
N) + f (EN

k + µ∗N)
]
−

m2
σσ

2

2
− U(σ)

+
m2
ωω

2
0

2
+

m2
ρρ

2
03

2
+
∑

l

gl

6π2

∫ ∞
0

k4 dk
(k2 + m2

l )1/2

[
f (El

k − µl) + f (El
k + µl)

]
+ ρBΣr.

Here m∗N = mN − gσNσ and µ∗N = µN − gωNω0 − gρNρ03I3 − Σr are the nucleon effective

mass and effective chemical potentials; I3 is the third component of nucleon isospin and σ, ω0

and ρ03 are the mean values of the meson fields, Σr is the rearrangement self-energy.



Results

Particle fractions in equilibrium (DDME2 & NL3)

Equilibrium state of matter is found from conditions µn + µνl = µp + µl, the charge
neutrality condition np = ne + nµ, the baryon conservation nB = nn + np, and the lepton
conservation nl + nνl = YLl nB.
In neutron star merger matter we heve typically YLe = YLµ = 0.1, which implies
Yn ' 0.8, Yp ' 0.2, and Ye ' Yµ ' 0.1 for models DDME2 and NL3.
The trapped species are neutrinos in the DDEM2 matter, whereas these are antineutrinos
in the case of the NL3 model.
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Results

Urca process rates (DDME2)
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The neutron decay processes involve antineutrinos ⇒ their rates are suppressed
compared to the lepton capture rates if the matter is neutrino-dominated.
At moderate temperatures T ≤ 10 MeV the lepton capture rates scale as Γpl↔nν ∝ T3.
The electron and muon capture rates are similar both qualitatively and quantitatively.
Non-relativistic approximation to the nucleon spectrum underestimates the equilibration
rates by factors from 1 to 10.



Results

Urca process rates (NL3)
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The model NL3 is in the antineutrino-dominated regime at low temperatures, where the
dominant equilibration process is the neutron decay (µνl/T ≤ −6).
The neutrino-dominated regime is realized at high temperatures, where the dominant
equilibration process is the lepton capture (µνl/T ' −3).
As a consequence, there is always a sharp minimum in the summed equilibration rate at
the transition point between these two regimes.



Results

Relative rates of neutron decay and lepton capture processes (NL3)
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The neutron decay and the lepton capture rates intersect at a value of the scaled chemical
potential within the range −5 ≤ µνl/T ≤ −3.
The non-relativistic approximation underestimates the exact rates by factors from 1 to 10
in the regions away from the minimum.
Close to the minimum the exact relativistic rates are lower as there is no minimum in the
non-relativistic approximation.
Thus, we conclude that the minimum in the transition point it is purely relativistic effect.



Results

Leptonic process rates (DDME2)
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The neutrino absorption rates are qualitatively similar to the lepton capture rates (shown
by dotted lines), but are smaller on average by an order of magnitude.

The antineutrino absorption rates are orders of magnitude smaller than the neutrino
absorption rates.

The muon decay rate is negligible because of the very small scattering phase space.

Thus, within the DDME2 model the leptonic processes are always much slower than the
Urca processes, putting the material in the “slow lepton equilibration” regime.



Results

Leptonic process rates (NL3)
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In the NL3 model, the neutrino absorption is more efficient at low densities, whereas at
the antineutrino absorption is operative at high densities.
The material described by the NL3 model is almost always in the “slow lepton
equilibration” regime.
The only exception is the transition region where the muonic Urca process rate has a
minimum. Here we have the “fast lepton equilibration” regime.



Results

The susceptibility C2
1/A1
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At high temperatures T & 30 MeV the susceptibility C crosses zero at certain values of
density where the proton fraction attains a minimum.

At that point the system becomes scale-invariant: it can be compressed and remain in
beta equilibrium ⇒ the bulk viscosity vanishes at that critical point.

The non-relativistic approximation strongly overestimates the susceptibility even at low
densities nB ≤ 2n0 where the relativistic corrections to the nucleonic spectrum are small.



Results

Bulk viscosity of npeν matter
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At low temperatures T ≤ 10 MeV the bulk viscosity decreases as ζ ∝ T−2.

This scaling breaks down at high temperatures T ≥ 30 MeV where the matter becomes
scale-invariant and the bulk viscosity drops to zero.

In the case of NL3 model, the bulk viscosity has a local maximum at high densities due to
the transition from the antineutrino-dominated regime to the neutrino-dominated regime.

The bulk viscosity decreases by orders of magnitude when the relativistic corrections are
properly taken into account.



Results

Bulk viscosity of npeµν matter
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The bulk viscosity of npeµ matter exceeds the one of npe matter by factors from 3 to 10
at the left side of the minimum.
Above the minimum the bulk viscosities of these two cases are almost the same.
At high temperatures the total bulk viscosity has a sharp minimum but does not drop to
zero as ζ ' ζe + ζµ in that regime, which drop to zero ar slightly different temperatures.
In the case of NL3 model at nB/n0 = 3 we have the opposite regime of fast
lepton-equilibration around the local maximum.



Conclusions

Summary and outlook

Summary

We studied the bulk viscosity of neutrino-trapped npeµ matter from Urca processes
under the conditions relevant to binary neutron star mergers.

We improved our previous calculations of β-equilibration rates and the nuclear
susceptibilities including the relativistic corrections to the nucleonic spectra.

We dominant β-equilibration rate is the lepton capture in the neutrino-dominated matter
and the neutron decay in the antineutrino-dominated matter.

There is a transition point at around −5 ≤ µνl/T ≤ −4 between these two regimes
where the summed equilibration rate has a sharp minimum.

The analysis of relative rates of Urca processes and pure leptonic processes shows that
the matter is in the “slow lepton equilibration regime” almost in the entire range of
interest except the transition region where we have the oppisite limit.

The bulk viscosity drops with the temperature and has sharp minimums at high
temperatures where the system becomes scale-invariant.

Bulk viscosity shows also local maxima at intermediate temperatures where the
transition between the antineutrino- and neutrino-dominated regimes occurs.

The numerical results show that muons enhance the bulk viscosity by factors 1÷10.

THANK YOU FOR ATTENTION!
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