Search for Physics Beyond the Standard Model in Final States with Two or Three Soft Leptons and Missing Transverse Momentum in p-p Collisions at $\sqrt{s} = 13$ TeV

Ioanna Papavergou, Emmanouil Vourliotis on behalf of the CMS Collaboration
SUSY Searches in a Nutshell

- Minimal Supersymmetric Standard Model (MSSM) → Simplified models with most particles decoupled → Phenomenology based on couple of particles @ TeV scale

- Usual signatures:
 - Large amounts of p_T^{miss}
 - Visible, high-p_T particles

 ⇒ No sign of SUSY particles

- Attention turns to less explored signatures:
 - Experimentally challenging
 - Highly theoretically motivated
Compressed SUSY: Experiment

- SUSY with compressed mass spectrum: $\Delta m(\text{particles}) \lesssim \mathcal{O}(10\%)$ of their masses

- Final state with
 - Small to moderate amounts of p_T^{miss}
 - Visible, low-p_T particles

- At the limit of
 - Detection,
 - Reconstruction and
 - Identification

\[\Delta m [\text{GeV}] \sim \mathcal{O}(1 - \mathcal{O}(100)) \]

\[\text{Decoupled from LHC accessible Physics} \]

\[\text{CMS} \]

\[\text{35.9 fb}^{-1} (13 \text{ TeV}) \]

\[\text{Expected} \quad \text{Observed} \]

\[m_{\tilde{\chi}_2^0} = m_{\tilde{\chi}_1^0} [\text{GeV}] \]

July 2018
Compressed SUSY: Theory

- EWK production:
 - **Wino/bino** compressed scenario ($M_1, M_2 \ll \mu$):
 - Theoretically motivated by the observed DM density
 - Not constrained by direct DM detection experiments
 - Direct **higgsino** production ($\mu < M_1, M_2$):
 - Naturalness arguments ⇒
 Higgsino triplet with similar mass near the EW scale
Compressed SUSY: Theory

- Top squark (stop) production:
 - Light stop ~mass degenerate with EWK LSP
 - Large Yukawa coupling + Mixing ⇒
 - Stops expected light
 - Co-annihilation region ⇒ LSP as source for DM
SUSY in Soft 2ℓOS & 3ℓ Final States

• New CMS result on compressed signatures: **CMS-SUS-PAS-18-004**

• Full Run 2 result: 137 fb⁻¹ → Trigger on \(p_T^{\text{miss}} \) (+leptons)

• Electroweak production → Small cross section

• Request initial state radiation (ISR) jet to induce \(p_T^{\text{miss}} \):

 - \(H_T > 100 \text{ GeV} \)

 - \(p_T^{\text{miss}} > 125 \text{ GeV} \)

• 2 SFOS (+1) leptons (\(e^+e^-/\mu^+\mu^- + e^\pm/\mu^\pm \))

 - Prompt & Isolated

 - Soft: \(3.5 < p_T < 30 \text{ GeV} \)
Dilepton Mass $M(\ell\ell)$

- $M(\ell\ell)$ distribution sensitive to SUSY particles mass difference:
 $M(\ell\ell) \sim M_{Z^*} \sim \Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$

- Compressed model $\Rightarrow 1 < M(\ell\ell) < 50$ GeV

- Signal modeling refinements affect $M(\ell\ell)$
 $(\Gamma_{\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell\bar{\ell}}, W/Z$ branching fraction)
2ℓOS-EWK Search Regions

- p_T^{miss} (GeV)
 - 125
 - 200
 - 240
 - 290

$M_{\ell\ell}$ (GeV) \sim $\Delta m(\tilde{\chi}_1^0, \tilde{\chi}_2^0)$

- $\mu\mu$
- ee

Another handle to separate signal from bkg: Bin in p_T^{miss}

CMS Preliminary

137.1 fb$^{-1}$ (13 TeV)

Events

Data

Non-prompt bkg
- $\ttbar(2\ell)$
- Diboson
- $\text{DY}(\to \tau\tau)$
- WZ

Data/pred.

Total unc.

Non-prompt e/µ

VV

TChi275/10

TChi150/3

TChi175/5

DY

Rares

TChi200/40

WZ

Non-prompt e/µ

V (13 TeV)

137.1 fb$^{-1}$ (13 TeV)
3ℓ-EWK Search Regions

- Extra lepton ⇒ SM depleted, signal-rich
- To enhance statistics:
 - No ISR jet requirement
 - Slightly different binning
2ℓOS-Stop Signal Regions

- Include different flavour pairs
- Slightly different binning

CMS Preliminary

137.1 fb⁻¹ (13 TeV)
Nonprompt ℓ

Nonprompt leptons:
- MisID'ed jets or ℓ from heavy quark decays
- Estimated with **Tight-to-Loose** method

Tight ID (tight Iso and IP$_{3D}$ cuts)
Loose ID (non isolated and/or non prompt)

- **Measurement Region (MR)**
 Measure Fake Rate (FR) in QCD-enriched data
 FR: Probability of Loose ID ℓ to pass the Tight ID

 \[
 FR(p_T, \eta) = \frac{\text{Tight ID } \ell}{\text{Loose ID } \ell}
 \]

- **Application Region (AR)**
 Nonprompt enriched region with Loose ID ℓ
 passing SR-like selection \rightarrow weighted by FR \rightarrow
 Nonprompt estimate in **Search Region (SR)**

 ❖ Residual non-closure assigned as systematic on non prompt background (up to 40%)
Fake Rate Application

- **Data-Driven (DD)** method: fake rate applied on AR data

- Smooth out stat. fluctuations in low yield regions:
 fake rate applied on norm-to-data AR simulation (semi-DD method)
 - Dedicated shape uncertainties

- **Same Sign (SS) CR**
 - Similar selection to SR but SS requirement
 - Used for evaluation of the nonprompt modeling
 - Strongly constrain the nonprompt bkg uncertainty

SS CR post-fit

![Graph showing CMS Preliminary data and predictions]

- **M(\ell\ell) [GeV]**
 - Axes: X: M(\ell\ell) [GeV], Y: Events
 - Data points and error bars for different categories (e.g., Data, VV, WZ, Nonprompt e/\mu, Total unc.)
 - Ratio data/pred. and total unc.

- **CMS Preliminary**
 - 137.1 fb^{-1} (13 TeV)
Prompt 2ℓ Bkg

- Prompt 2ℓ bkg CR split into two MET bins:
 - Low MET (125-200 GeV)
 - High MET (>200 GeV)
- Estimated from simulation and corrected by data driven scale factor

$\ell\ell$ CR

<table>
<thead>
<tr>
<th>Events</th>
<th>CMS Preliminary</th>
<th>137.1 fb$^{-1}$ (13 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tt(2l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonprompt e/µ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total unc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data/pred. total unc.

$\ell\ell$ CR

- DY($\tau\tau$) CR
 - Estimate $M_{\tau\tau} \sim M_Z$ from leptons and p_T^{miss}
 - $0 < M_{\tau\tau} < 160$ GeV

- TT CR
 - No $M_T(\ell, p_T^{miss})$ cut
 - & Invert b-tag veto
Prompt Multiboson Bkg

- Prompt multiboson bkg enriched regions split into two MET bins:
 - Low MET (125-200 GeV)
 - High MET (>200 GeV)
- Estimated from simulation and corrected by data driven scale factor

WZ enriched region
Leptonically decaying WZ most dominant prompt bkg in 3ℓ SR
Event selection:
- No $m_{\ell\ell,\text{SFOS}}^{\text{min}}$ bounds
- No Z veto

- **VV (ZZ/WW)** and **Rare bkg**: estimated from simulation
Wino/Bino Interpretation

Acceptance down to low $m_{\ell\ell}$ - sensitivity down to $\Delta m \sim 3$ GeV

Major improvements wrt previous analysis (⭐)

Simplified Wino/Bino model:

- Sensitivity up to $m_{\tilde{\chi}_2^0} \sim 300$ GeV @ $\Delta m \sim 10$ GeV
- $m_{\tilde{\chi}_2^0} \sim 250$ GeV @ $\Delta m \sim 35$ GeV
- Higher Δm complementarity from 3ℓ SR
Higgsino Interpretation

\[\tilde{\chi}_1^0, \tilde{\chi}_1^\pm \text{ and } \tilde{\chi}_2^0 \text{ mostly higgsinos} \]

Simplified higgsino

BR=100% &
cross section pure Higgsino

pMSSM higgsino

BR & cross sections varied according to pMSSM model

Simplified higgsino model:

- Exclude up to \(m_{\tilde{\chi}_2^0} \sim 150 \text{ GeV} @ \Delta m \sim 3 \text{ GeV} \)
- \(m_{\tilde{\chi}_2^0} \sim 210 \text{ GeV} @ \Delta m \sim 7 \text{ GeV} \)

pMSSM Higgsino model:

- \(\mu \)-M1 parameters
- Small \(\Delta M(\text{NLSP-LSP}) \) mapped to large M1
- Exclude up to \(\mu \sim 185 \text{ GeV} @ M1 \sim 1000 \text{ GeV} \)
Stop Interpretations

Simplified T2bW model:

- Exclude up to \(m_{\tilde{t}} \sim 500 \text{ GeV} \) @ \(\Delta m = 40 \text{ GeV} \)

Major improvements wrt previous analysis (★)

Similar results for T2bff model
Summary

• Compressed SUSY well motivated by a number of interesting scenarios

• New CMS result on compressed SUSY searches in events with 2 or 3 soft leptons and p_T^{miss} with full Run-2 dataset
 • New approaches to overcome experimental challenges
 ➔ Extended acceptance to low Δm
 ➔ Good control of backgrounds

• Upper limits are set on x-sec of Wino/Bino, Higgsino and Stop models

• Great improvement compared to 2016 results

• Cover challenging corner of phase space ➔ Complementary to other CMS searches