Process quality control (PQC) of silicon sensors for the Phase-2 upgrade of the CMS Tracker

P. Assiouras, I. Kazas, A. Kyriakis, D. Loukas

National Center of Scientific Research Demokritos
Institute of Nuclear and Particle Physics
Detector Instrumentation Laboratory

HEP 2021
Introduction

- Silicon sensors before they are installed in the high energy experiments must have a substantial quality, in order to cope with the higher luminosity of HL-LHC.
- CMS has developed a quality assurance plan to make sure that all the components meet the specifications and to monitor the production procedure of the sensors.
- Process quality control is contacted to dedicated test structures produced in the same wafer as the silicon sensors that will be used in the experiment.
- Together with the Sensor Quality control consist of the two main procedures of the quality assurance of the sensors.

1. The phase 2 upgrade of CMS Tracker
2. Sensor and process quality control
3. Examples of experimental measurements
From LHC to HL-LHC

- **Phase-I** (2018-2020), Double the designed Luminosity: $2 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, Integrated Luminosity: 300 fb^{-1} at Run 3.
- **Phase-II** (2024-2026), Luminosity: $5 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, 300 fb^{-1} per year 3000 fb^{-1} for 10 years of operation.

LHC / HL-LHC Plan

Figure: HL-LHC upgrade schedule.
Phase-2 upgrade of CMS Tracker

Due to high number of pile-up events and radiation levels a major upgrade of the CMS experiment is needed. Three of the most important requirements for the CMS Tracker upgrade are:

- Radiation Tolerance. ⇒ Flip from p-on-n to n-on-p sensors, Oxygen-rich substrates
- High Pile up ⇒ Increase granularity.
 - Increased number of sensors
 - Increased segmentation to each sensor.
- Improve CMS trigger system ⇒ Contribution of CMS Tracker at Level-1 Trigger.
 - Discrimination of low p_T events at module level at bunch crossing rate.
 - Reduce data volume.
 - Keeping the most interesting events for physics studies.

Outer Tracker:

- **2S modules** Two very closely spaced strip sensors
- **PS modules** Two very closely spaced sensors. One with macro-pixels (PS-p) and one with strips (PS-s)

Inner Tracker:

- **Pixel modules** Pixel very thin detectors with two pixel geometries ($50 \times 50 \ \mu m$),($100 \times 25 \ \mu m$)
Outer Tracker sensors

Outer Tracker will encompass 200 m^2
Consisting of 24000 sensors
Two different modules with three different sensors

- **2S sensors**
 - 6″ wafers
 - n-on-p sensors
 - Float-zone technique
 - Active thickness 290 um
 - AC coupled with Poly-silicon biasing

- **PS-s sensors**
 - 6″ wafers
 - n-on-p sensors
 - Float-zone technique
 - Active thickness 290 um
 - AC coupled with Poly-silicon biasing

- **PS-p sensors**
 - 6″ wafers
 - n-on-p sensors
 - Float-zone technique
 - Active thickness 290 um
 - DC coupled
 - Biased with punch-through structures

Figure: Design of the 2S, PS-s and PS-p wafers

¹GDS files made by Institute of High Energy Physics (HEPHY), Austria
Sensor and process quality control

- **25 sensor wafer**

- **PSs sensor wafer**

- **Sensor quality control**
 - Direct measurement of subset of sensors which will be made into modules
 - Directly verify that HPK is producing sensors within our specs
 - Takes a lot of time. Less samples in the same batch can be measured.

- **Irradiation tests**
 - Irradiate mini sensors and test structures from same wafer as diced sensors
 - Verify that the silicon will behave within spec after expected radiation doses of HL-LHC

- **Process quality control**
 - Measurement of test structures located on the same wafer constructed with the same properties as the main sensors, utilizing the empty space on the edges of the wafers.
 - Verify silicon quality without the need to handle sensors
 - Takes less time. More samples in the same batch can be measured
QA centers

SQC centers
- Brown
- Delhi
- Hephy
- KIT
- NCP
- Rochester

PQC centers
- Brown
- Demokritos
- Hephy
- Perugia

IT centers
- KIT
- Brown
PQC measurements: Flute structures

- Test structures that are arranged around an array of 20 contact pads, called "flute"
 - Automated measurements by using a 20 needle probe card and a switching matrix

- Each Half Moon contain 2 sets of 4 flutes in each side. They are separated in
 - Quick Flutes (Quick evaluation of most important parameters. Takes about 30 min)
 - Flute 1: MOS, VDP (P-stop, n+, Poly), FET
 - Flute 2: GCD, Rpoly, Diel Breakdown, Linewidth(n+, p-stop)
 - Extended Flutes (Providing additional parameters. Performed in a smaller number of wafers. Takes about 50 min)
 - Flute 3: Diodes Half, VDP(Bulk, Edge(p+), Metal(Al))
 - Flute 4: GCD05, CBKR(n+, Poly)

- Additional flute and standard test structures to be contacted with needles.
Experimental setup

- Electrical characterization setup consisting of:
 - Probe Station: Karl Suss PA 150
 - CV: HP4092A
 - IV: Keithley 6517A
 - IV: Keithley 2410A
 - The whole setup is controlled with a LabView program
 - A probe card and switching matrix is used for automatization of the measurements on the flute structures
Example of measurements: Van der Pauw cross structures

- Van Der Pauw (VDP) test structures are used to measure the resistance of thin films (Al, n+, p-stop, Edge)
- A current source is applied in two contacts. The voltage difference is measured to the other two contacts

\[R_{sh} = \frac{\pi}{\ln(2)} \frac{V}{I} \]
Example of measurements: MOS capacitors

- MOS capacitor is the most useful device in the study of semiconductor surfaces and interfaces.

- Parameters measured with this device:
 - Flatband voltage $V_{fb} = \phi_{Al} - \phi_{Si}$
 - Ideal case: $V_{fb} = 0$
 - Non ideal: $V_{fb} \propto N_{ox}$
 - Fixed oxide charge concentration N_{ox}
 - Oxide capacitance C_{ox}
 - Oxide thickness $t_{ox} = C_{ox}/\varepsilon A$

Panagiotis Assiouras (NCSR "Demokritos")

2021 11/14
Example of measurements: Diodes

- Diodes are used in order to study of the bulk properties. The standard type of measurements are IV and CV measurements:

CV Measurements:
- Full depletion Voltage V_{fd}
- Doping concentration N_{sub}
- Bulk resistivity $\rho > 3.5 \, k\Omega\, cm$

IV Measurements:
- Current value at 600V ($< 2.5 \, nA/mm^3$)
- Check for breakdown voltage
Example of measurements: Gate controlled diode

- GCD is used to investigate the surface current and the number of interface traps
- Consisting of comb-shaped Diode with n+ strips, intertwined with comb-shaped MOS.

Parameters measured with this device:
- Surface current $I_{surf} = I_{depl} - I_{inv}$
- Surface recombination velocity $S_0 \propto I_{surf}$
- Interface trap density $D_{it} \propto S_0$
Conclusion

- The Process Quality Control (PQC) aims to monitor the stability of the sensor fabrication process.

- We are moving into a mass production period with all the PQC centers ready for this phase.

- All the batches that were tested so far were qualified as good
 - Uniform measurements between different batches
 - Good agreement between the PQC centers