The microNet (μNet) project: An extended network of educational cosmic ray telescopes

M. Petropoulos, A. Tsirigotis, A. Leisos
Physics Laboratory, School of Science and Technology
Hellenic Open University
Outline

μCosmics Detector

Educational Activities

The μNet Project

The 2021 pilot run
Educational Cosmic Ray Telescopes

A typical educational Cosmic Ray Telescope

Reconstruction of the shower direction

- 3-4 plastic scintillator detectors
- Local Coincidence, Relative Timing, and Triangulation
- Shower axis reconstruction with an accuracy of a few degrees.
Each station consists of
- 3 scintillator counters (~30 m spacing)
- RF antenna (autonomous station)
- DAQ and Slow Control electronics
- Power Supply, Monitoring system
The μCosmics Detector

The μCosmics Detector
The μCosmics Detector

Integrated Detector

Performance Studies

The SiPM

PM6650-EB
- 6x6mm
- 50μm micro cell size
- 14272 cells
- 38% QE at 430nm

HMA-0.2N2.5-5

Threshold 20 mV (1 MIP)
Timing @ 6 mV
Median 6.5 deg
236 per day, 10 per hour

HEP 2021 - 38th Conference on Recent Developments in High Energy Physics and Cosmology, Thessaloniki, Greece, 16-19 June 2021
The μCosmics Detector

Quarknet DAQ

- 4 input channels with amplification.
- Time tagging is performed in one adjustable threshold.
- The time resolution for timing and ToT measurement is 1.25 ns.
- The trigger logic is based on the level of coincidence.
- It provides a trigger out signal
- It is connected with an External GPS receiver.

Hantek DAQ

- 1 Gsa/s acquisition rate
- 250 MHz Analog Bandwidth
- 4 input channels with amplification.
- It is operated through the USB port of the PC
- Full waveform digitization
- no GPS time-tagging.
- No trigger out
Educational Activities with μCosmics

Detector Assembly

Scintillator Cleaning
Tyvek Cut

Tile Positioning
WLS fibers insertion
Tyvek positioning

Educational Activities with μCosmics

Detector Assembly

- Connectors positioning
 - SiPM attachment
- Light Proofing
- Final Test
 - Dark Current measurement
Educational Activities

Detector Calibration

Data Analysis

Calibration Curve

Computation
Educational Activities with μCosmics

Detector Timing Synchronization

Time Offset
Educational Activities with μCosmics

Muon Telescopy

Geometry Studies
Educational Activities with µCosmics

Shower Reconstruction - Data Analysis
μNet

μCosmics detectors at high schools

Remote operated experimental setups of the HOU Physics Lab

Utilization of the detection stations deployed at the HOU university campus
Construction of a detector unit

Calibration of the telescope

Estimation of the muon flux

Detector geometry studies

Data Acquisition and Data Analysis

HEP 2021 - 38th Conference on Recent Developments in High Energy Physics and Cosmology, Thessaloniki, Greece, 16-19 June 2021
μNet

- Scientific staff of the HOU Lab
- High school teachers
- High school students
- Society

School events & workshops
Collaboration among schools
Participation in international events
The μNet Pilot Run

μNet

- 5 μCosmics Detectors deployed at High Schools of Patras
- 15 months duration
- Educational Tools
- Educational Activities
- Training
- Feedback and Evaluation

Deployment at 5 High Schools of Patras

- Detector Array
 - Construction
 - Calibration
 - Deployment and Operation at school

- Educational Activities
 - Detector Unit Assembly
 - Response Calibration
 - Timing Synchronization
 - Muon Telescope
 - Operation & Monitoring
 - Station-Geometry Study
 - Data Analysis

- Training
 - Distant Learning
 - Top Down approach (RT \rightarrow Teachers \rightarrow Students)

- Feedback and Evaluation
 - Online Meetings
 - Discussion Forum

Research Team (RT)

- 1 Faculty member
- 1 Post Doc Researcher
- 1 PhD Student

Educational Tools

- Offline & Online Software
- Educational Material and MOOCS
- Manuals & Questionnaires

2 station in adjacent schools for double station coincidence studies
The μNet Pilot Run

Experimental devices located at the HOU Physics Laboratory and remotely accessed by the students
The online training implemented to a dedicated moodle-platform using short videos, questionnaires and education material.
The μNet Pilot Run

A snapshot of a regular weekly online meeting with the schools’ teachers.
Evaluation by teachers participating in the pilot program, for the distance learning \(\mu \text{Cosmics} \) project. (1: Not at all satisfactory, to 5: Particularly satisfactory)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>How interesting do you think this program is?</td>
<td>100%</td>
</tr>
<tr>
<td>Have you gained new knowledge from your participation?</td>
<td>25% 75%</td>
</tr>
<tr>
<td>The supporting material available so far, how satisfactory do you think it is?</td>
<td>25% 75%</td>
</tr>
<tr>
<td>How interesting do you think this program might be for students?</td>
<td>25% 75%</td>
</tr>
<tr>
<td>Evaluate the individual material you have studied so far.</td>
<td>25% 75%</td>
</tr>
<tr>
<td>How comprehensible for students can be the Physics of such a program?</td>
<td>25% 25% 50%</td>
</tr>
<tr>
<td>How satisfactorily do you think students can meet the laboratory and digital requirements of the program?</td>
<td>25% 25% 50%</td>
</tr>
<tr>
<td>Do you think that distance education can work in such research programs for students?</td>
<td>25% 75%</td>
</tr>
</tbody>
</table>
The μNet Pilot Run

High school students involvement during the pandemic
The 1st array of educational air shower detectors in Greece is under construction (μNet)

A complete set of educational activities and educational material has been developed

In situ and remote operation procedures are established

The pilot run with 5 participating schools is on the way

The μNet will be fully operational by 2023 involving more than 50 schools and 1000 students per year
Thank you !!!