DarkSPHERE: Reaching the Neutrino Floor with a Spherical Proportional Counter HEP 2021

I. Katsioulas, P. Knights, I. Manthos, J. Matthews (she/her), T. Neep, K. Nikolopoulos, R. Ward

University of Birmingham

17th June 2021

NEWS-G

New Experiments With Spheres - Gas Light DM searches with a novel gaseous detector, the spherical proportional counter

UNIVERSITY OF

Spherical Proportional Counter

- O(0.1-1 m) diameter sphere with O(1 mm)spherical anode in centre
- Voltage applied to anode
- Maximum volume-to-surface
- Flexibility in gas choice, can operate at high pressures
- Single electron threshold capability

 Giomataris and G. Charpak in CEA Saclay (sphere was previously a LEP RF cavity)

- \bullet Electric field scales as $\sim 1/r^2$
 - Divides detector into drift and avalanche regions

$$ec{E} = rac{V_1}{r^2} rac{r_c r_a}{r_c - r_a} \hat{r} pprox rac{V_1}{r^2} r_a \hat{r}$$

- Capacitance independent of detector size
 - Large volume with low electronic noise

$$C = 4\pi\epsilon_0 \frac{r_c r_a}{r_c - r_a} \approx 4\pi\epsilon_0 r_a$$

SEDINE - First NEWS-G DM Detector

60 cm diameter detector

- Using Aurubis NOSV copper, chemically cleaned to remove radon
- Located in Modane Underground Lab., France
- Operated with 3.1 bar Ne:CH₄ (99.3%:0.7%)
- 34.1 live-days, 9.6 kg/days

SEDINE results exclude at 90% CL cross-sections above $4.40\times 10^{-37}~\text{cm}^2 \text{ for a } 0.5 \text{ GeV DM particle}$

SNOGLOBE 140 cm diameter detector

- Constructed and tested in Modane Underground Lab., France
- Currently under commisionning in SNOLAB, Canada
- 4N (99.99% pure) Aurubis copper
- Electroplating used to apply 500 µm ultra-pure inner layer, reducing background rate below 1 keV by 70%

Installed in SNOLAB Dec 2020

Preliminary sensitivity projection for SNOGLOBE

Electroplating

- **Contaminants** from ²³⁸U and ²³²Th decay chain, naturally deposited by ²²²Rn
- Copper has a high reduction potential, contaminants do not
 - Preferentially deposited
 - Creates ultra-pure layer of copper
- ICP-MS assay of sample comparable to other electroformed copper
- ²¹⁰Po in electroformed copper is below XIA UltraLo-1800 sensitivity < 3 mBg/kg

	ICP-MS Assay			
	Sample	Weight	²³² Th	^{238}U
		[g]	$[\mu Bqkg^{-1}]$	$[\mu Bqkg^{-1}]$
e wer Sunniv	C10100 Cu (Machined)	-	8.7 ± 1.6	27.9 ± 1.9
	Cu Electroformed	-	< 0.119	$<\!0.099$
phere	Hemisphere 1	0.256	< 0.58	< 0.26
	Hemisphere 2	0.614	< 0.24	< 0.11

NIMA 988 (2021) 164844

SNOGLOBE Background Contributions

- Detector made from 4N copper with only inner layer electroformed, so ²¹⁰Pb contamination is still a dominant background
- Cosmogenic activation will still occur and contribute to background
- Next step to suppress these further is underground electroforming

ECuME

140 cm diameter detector

- Fully electroformed copper
- Electroformed underground at SNOLAB, suppressing cosmogenic activation
- Production rate $\sim 1 \; mm/month$
- 30 cm prototype this summer
 - Full detector construction late this year

• Using SNOGLOBE shielding

EuME

• Idea: Improve shielding configuration

DarkSPHERE - Aspiring to Reach the Neutrino Floor

3m diameter detector

- Fully electroformed underground
- Improved shielding design
- Improved readout sensor to support larger detector
- Operate with 5 bar He:C₄H₁₀ (90%:10%)
- Targeting to be hosted in Boulby Underground Laboratory, UK, in the Large Experimental Cavern (LEC)
 - Underground science facility located 1.1 km below ground in Boulby mine
 - Experience hosting gaseous detector experiments (e.g. DRIFT)

DarkSPHERE Readout Sensor

- 11-anode ACHINOS sensors used in current SPCs
- Anodes at equal radii from centre
- 60-anode sensors being investigated
- Higher electric field magnitude at higher radii with more anodes - supports larger detectors and higher pressures

60-anode ACHINOS simulated with ANSYS - anodes are white points at the vertices of a truncated icosahedron

JINST 12 (2017) 12, P12031 JINST 15 (2020) 15, P11023

Background Contributions

Environmental neutrons

- From natural radioactivity in cavern rock
- From cosmic ray interactions
- Environmental photons, from natural radioactivity in cavern rock
- Radioactive contaminants in the detector shielding

Natural radioactivity neutron spectrum

Cosmic muon-induced neutron spectrum

J.Radioanal.Nucl.Chem. 298 (2013) 3, 1483

Location	7.4–2734.2	7.4–249.8	250.2–500.4	500.8–1005.2	1005.6–1555.8	1556.2–2055.8	2056.2–2734.2
	keV	keV	keV	keV	keV	keV	keV
8	0.128	7.82×10^{-2}	2.15×10^{-2}	1.63×10^{-2}	1.10×10^{-2}	7.14×10^{-4}	5.83×10^{-4}

Photon flux from cavern rock

J. Matthews (University of Birmingham)

DarkSPHERE, HEP 2021

Estimating Backgrounds with Simulation

- Geant4: Investigate shielding configurations and background
- Obtain interaction probability in gas for different particle species
- Interaction probability together with background flux measurements gives background rate
- Forced collision scheme for Monte-Carlo variance reduction

doi: 10.5772/53384

Estimated Background from Electroformed Copper Sphere

- ²¹⁰Pb contamination in the electroformed copper should be the dominant background contribution, as it cannot be reduced
- Estimated to be $< 0.12 \; \mu Bq \, kg^{-1}$
- Simulated decays within the 1cm detector shell
- \bullet Expected rate is $2.43\times 10^{-3}~/\text{kg/day/keV}$ (dru)

Water Shielding

- Target for shielding is to reduce all other backgrounds to the expected electroformed copper background
- A **pure water shielding** setup was considered
- Fitting within the 7m cubic area available in the LEC
- Contamination from ⁴⁰K in pure water expected to be **negligible**

Table: Environmental background rates

Rate [dru]	Neutrons	Photons
Total	$1.97 imes 10^{-3}$	8.11
Neutrons	$1.26 imes 10^{-3}$	-
Photons	6.35×10^{-4}	7.67
Electrons	$6.67 imes10^{-5}$	4.34×10^{-1}
Positrons	$5.85 imes10^{-6}$	4.48×10^{-3}

Diagram of a pure water shielding setup with 2m thick

water on each side

 2m thick water suppresses neutron background, but not photons

Water Shielding

- Tested increasing water thicknesses beyond what fits in the 7m space
- 3.5m thick water is required to suppress the photon background

Table: Environmental photon rates

Rate [dru]	Photons
Total	$1.90 imes10^{-3}$
Photons	$1.52 imes 10^{-3}$
Electrons	$3.75 imes10^{-4}$
Positrons	$4.61 imes 10^{-6}$

Diagram of a pure water shielding setup with 3.5m thick water on each side

Hybrid Shielding

- Switched to using water and lead shielding, fitting in the 7m cubic area available
- Suppresses both photons and neutrons

Table: Environmental background rates

Rate [dru]	Neutrons	Photons
Total	$1.86 imes10^{-3}$	$1.24 imes 10^{-3}$
Neutrons	$6.57 imes10^{-4}$	-
Photons	$1.05 imes 10^{-3}$	1.18×10^{-3}
Electrons	$1.07 imes 10^{-4}$	5.81×10^{-5}
Positrons	4.26×10^{-5}	9.81×10^{-7}

Diagram of a 7m cube water and lead shielding setup

- **High** ²¹⁰**Pb contamination** in lead may require additional shielding
 - May need layer of archaeological lead or copper
 - Currently being investigated

Physics Potential of DarkSPHERE

Sensitivity reaches the neutrino floor!

- Estimate of a 0.02(dru) flat background used for this projection
- Shielding design aims to suppress background below this estimate
- Total running time of 300 days assumed

90% CL upper-limit sensitivity projection

Summary

- Electroformed copper maximises radiopurity
- Electroforming underground also suppresses cosmogenic activation
- DarkSPHERE shielding is being designed
- DarkSPHERE sensitivity projections indicate potential to reach the neutrino floor

