Introduction	Selection	Matrix Method Application	Results	Summary	Backup

Fake Background estimation in $W^{\pm}Z$ diboson production

Ioannis Karkanias

Aristotle University of Thessaloniki

Operational Programme Human Resources Development, Education and Lifelong Learning Co-financed by Greece and the European Union

June 18, 2021

Ioannis Karkanias (A.U.Th.)

HEP 2021 Thessalonik

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
•	00000	000000	00	0	0000

Motivation

- ✓ Motivation for Diboson
 Processes:
 - EWSB probe at TeV scale
 - Sensitive to aTGCs / aQGCs
 - Polarization

• 00000 000000 00 0 00000	Introduction	Selection	Matrix Method Application	Results		Backup
	•	00000	000000	00	0	0000

Motivation

- ✓ Motivation for Diboson Processes:
 - EWSB probe at TeV scale
 - Sensitive to aTGCs / aQGCs
 - Polarization

Introduction	Selection	Matrix Method Application	Results	Backup
•				

Motivation

- Motivation for Diboson
 Processes:
 - EWSB probe at TeV scale
 - Sensitive to aTGCs / aQGCs
 - Polarization
- ∇ and especially $<math>W^{\pm}Z$:
 - $\circ \frac{\sigma_{W+Z}}{\sigma_{W-Z}}$ $\circ \text{ NLO & NNLO }$ corrections (1604.08576)

\sqrt{s}	$\sigma_{\rm LO}$ [pb]	$\sigma_{\rm NLO} \ [{\rm pb}]$	$\sigma_{\rm NNLO}$ [pb]	$\sigma_{\rm NLO}/\sigma_{\rm LO}$	$\sigma_{\rm NNLO}/\sigma_{\rm NLO}$
7	$11.354(1)^{+0.5\%}_{-1.2\%}$	$18.500(1)^{+5.3\%}_{-4.1\%}$	$19.973(13)^{+1.7\%}_{-1.9\%}$	+62.9%	+ 8.0%
8	$13.654(1)^{+1.3\%}_{-2.1\%}$	$22.750(2)^{+5.1\%}_{-3.9\%}$	$24.690(16)^{+1.8\%}_{-1.9\%}$	+66.6%	+ 8.5%
13	$25.517(2)^{+4.3\%}_{-5.3\%}$	$46.068(3)^{+4.9\%}_{-3.9\%}$	$51.11(3)$ $^{+2.2\%}_{-2.0\%}$	+80.5%	+10.9%
14	$27.933(2)^{+4.7\%}_{-5.7\%}$	$51.038(3)^{+5.0\%}_{-4.0\%}$	$56.85(3) \stackrel{+2.3\%}{_{-2.0\%}}$	+82.7%	+11.4%

Table 1: Total on-shell $W^{\pm}Z$ cross sections at LO, NLO and NNLO for relevant collider energy the last two columns contain the relative corrections at NLO and NNLO, respectively.

Introduction	Selection	Matrix Method Application	Results		Backup
0	●0000	000000	00	0	0000

W[±]Z Inclusive Event Selection

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	●0000	000000	00	0	0000

W [±] Z Inclusive Event Selection			
Event Cleaning	Reject LAr, Tile and SCT corrupted / incomplete events		
Trigger and Vertex	Hard scattering vertex with $N_{\text{Tracks}} \ge 2$ Event must fire e/μ HLT		

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	000000	00	0	0000

■ *Illv* signature

3 sets of lepton selection cuts:

- Baseline: p_T > 5 GeV, basic quality & isolation, overlap removal with other leptons etc.
- Z-type: p_T > 15 GeV, better quality & isolation, OLR with selected jets etc.
- W-type: p_T > 20 GeV, tighter quality criteria and stricter isolation

W [±] Z Inclusive Event Selection			
Event Cleaning	Reject LAr, Tile and SCT corrupted / incomplete events		
Trigger and Vertex	Hard scattering vertex with $N_{\text{Tracks}} \ge 2$ Event must fire e/μ HLT		
ZZ veto	< 4 Baseline-Selection Leptons		
$III\nu$ signature	Exactly 3 leptons passing Z lepton selection		
Leading p_T	$p_T^{lead} > 27 \text{ GeV}$ (25 GeV for data / MC from 2015)		

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

■ *Illv* signature

3 sets of lepton selection cuts:

- Baseline: p_T > 5 GeV, basic quality & isolation, overlap removal with other leptons etc.
- Z-type: p_T > 15 GeV, better quality & isolation, OLR with selected jets etc.
- W-type: p_T > 20 GeV, tighter quality criteria and stricter isolation
- Reconstruct resonant Z

W [±] Z Inclusive Event Selection			
Event Cleaning	Reject LAr, Tile and SCT corrupted / incomplete events		
Trigger and Vertex	Hard scattering vertex with $N_{\text{Tracks}} \ge 2$ Event must fire e/μ HLT		
ZZ veto	< 4 Baseline-Selection Leptons		
III_{ν} signature	Exactly 3 leptons passing Z lepton selection		
Leading p_T	$p_T^{lead} > 27 \text{ GeV}$ (25 GeV for data / MC from 2015)		
Z-decay leptons	Pair of SFOC leptons passing Z selection		
Z Mass Window	$ M_{II}-M_Z <$ 10 GeV		

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

■ *Illv* signature

3 sets of lepton selection cuts:

- Baseline: p_T > 5 GeV, basic quality & isolation, overlap removal with other leptons etc.
- Z-type: p_T > 15 GeV, better quality & isolation, OLR with selected jets etc.
- W-type: p_T > 20 GeV, tighter quality criteria and stricter isolation
- Reconstruct resonant Z

W±Z Inclusive Event Selection			
Event Cleaning	Reject LAr, Tile and SCT corrupted / incomplete events		
Trigger and Vertex	Hard scattering vertex with $N_{\text{Tracks}} \ge 2$ Event must fire e/μ HLT		
ZZ veto	< 4 Baseline-Selection Leptons		
III_{ν} signature	Exactly 3 leptons passing Z lepton selection		
Leading p_T	$p_T^{\text{lead}} > 27 \text{ GeV}$ (25 GeV for data / MC from 2015)		
Z-decay leptons	Pair of SFOC leptons passing Z selection		
Z Mass Window	$ M_{II}-M_{Z} <$ 10 GeV		
W [±] lepton	Remaining lepton passes W^{\pm} selection		
W [±] Transverse Mass	$m_T^W > 30 \text{ GeV}$		

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
O	0000		00	O	0000
_ .					

Distinguish depending on final state (FS) leptons:

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
	00000				

Distinguish depending on final state (FS) leptons:

Irreducible - \geq 3 prompt FS leptons
\bullet ttV
$\blacksquare tZ$
∎ ZZ

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
	00000				

Distinguish depending on final state (FS) leptons:

Irreducible - \geq 3 prompt FS leptons	
\bullet ttV	
\bullet tZ	
■ ZZ	

Reducible - \geq 1 fake FS lepton

- Heavy / Light flavour jets mis-identified as leptons
- 2 Leptons (electrons) from photon conversion

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
	00000				

Distinguish depending on final state (FS) leptons:

Irreducible - \geq 3 prompt FS leptons	
\bullet ttV	
■ tZ	
■ ZZ	

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
	00000				

Matrix Method for Background Estimation

- $\rightarrow\,$ The Matrix Method (MM) is a way to estimate the contribution of background processes to the SR without relying on Monte Carlo simulation.
- ightarrow Background processes may not be accurately modeled by existing software
 - o MM is a data-driven method to estimate such backgrounds

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	000000	00	0	0000

Matrix Method for Background Estimation

- $\rightarrow\,$ The Matrix Method (MM) is a way to estimate the contribution of background processes to the SR without relying on Monte Carlo simulation.
- ightarrow Background processes may not be accurately modeled by existing software
 - MM is a data-driven method to estimate such backgrounds

Toy single Bkg. Case

- Assuming SR selection C, expect: $\nu(C)$ events in total
- Substitute the selection efficiency

$$\nu(C) = \epsilon_C \nu_S + \epsilon_{C,B} \nu_B$$

• Create selection D targeting B:

$$\nu_{sel} (C) = \epsilon_C \nu_S + \epsilon_{C,B} \nu_B$$
$$\nu_{sel} (D) = \epsilon_D \nu_S + \epsilon_{D,B} \nu_B$$

• Solve for ν_B by inverting the efficiency matrix

$$u = \epsilon^{-1}
u_{
m sel}$$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	000000	00	0	0000

Matrix Method for Background Estimation

- $\rightarrow\,$ The Matrix Method (MM) is a way to estimate the contribution of background processes to the SR without relying on Monte Carlo simulation.
- ightarrow Background processes may not be accurately modeled by existing software
 - MM is a data-driven method to estimate such backgrounds

Toy single Bkg. Case			
• Assuming SR selection C , expect: ν (C) events in total	• Create selection <i>D</i> targeting <i>B</i> : $ u_{sel}(C) = \epsilon_C \nu_S + \epsilon_{C,B} \nu_B $		
 Substitute the selection efficiency 	$ u_{sel}\left(\mathcal{D} ight) =\epsilon_{\mathcal{D}} u_{\mathcal{S}}+\epsilon_{\mathcal{D},\mathcal{B}} u_{\mathcal{B}}$		
$\nu\left(\mathcal{C}\right) = \epsilon_{\mathcal{C}}\nu_{\mathcal{S}} + \epsilon_{\mathcal{C},\mathcal{B}}\nu_{\mathcal{B}}$	$\circ~$ Solve for ν_{B} by inverting the efficiency matrix		
	$oldsymbol{ u}=\epsilon^{-1} oldsymbol{ u}_{ extsf{sel}}$		

■ In $W^{\pm}Z$ production, any of the leptons assigned to the *W* or the *Z* can be a fake. **Notation**: N_{RFR} denotes the number of events with a real lepton assigned to the *W* and the trailing *Z*-lepton, while the leading *Z*-lepton is fake

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
	00000				

1. Loose SR: Loosen the selection \rightarrow enhance fakes				
Electrons	Muons			
$p_{\rm T}$ > 15 GeV	$p_{\rm T} > 15 \text{GeV}$			
$ \eta < 2.47$	$\eta < 2.7$			
$ (1.37 < \eta < 1.52) $	-			
pass Loose LH ID	Medium LH ID			
$ d_0^{BL}/\sigma(d_0^{BL}) < 5$	$ d_0^{BL}/\sigma(d_0^{BL}) < 3$ (if $\eta < 2.5$)			
z0 < 0.5	z0 <0.5 (if η < 2.5)			
+ lisolation and/or lidentification =				
I	Loose			

 Loose lepton set disjoint from tight (SR) selection set

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

selection \rightarrow enhance fakes				
Electrons	Muons			
$ \eta < 2.47$	$p_T > 15 \text{ GeV}$ $\eta < 2.7$			
$ (1.37 < \eta < 1.52)$ pass Loose LH ID	Medium LH ID			
$ d_0^{BL}/\sigma(d_0^{BL}) < 5$ z0 <0.5	$ d_0^{BL}/\sigma(d_0^{BL}) < 3 \text{ (if } \eta < 2.5)$ z0 <0.5 (if $\eta < 2.5$)			
+ lisolation and/or lidentification =				
	Loose			

Loosa SR. Loosan tha

 Loose lepton set disjoint from tight (SR) selection set

2. Express se	lection co	ombinatio	ns		
$\left(\begin{array}{c} N_{TTT}\\ N_{TTL}\\ N_{TLT}\\ N_{LT}\\ N_{LT}\\ N_{LT}\\ N_{LT}\\ N_{LLT}\\ N_{LLT} \end{array}\right) = \left(\begin{array}{c} e_1e_2e_3\\ e_1e_2e_3\\ e_1e_2e_3\\ e_1e_2e_3\\ e_1e_2e_3\\ e_1e_2e_3\\ e_1e_2e_3\\ e_1e_2e_3 \end{array}\right)$	 e1 e2 f3 e1 f2 e3 e1 f2 f3 e1 f2 e3 e1 f2 f3 e1 f2 e3 e1 f2 f3 e1 f2 e3 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} f_{1} e_{2} f_{3} \\ f_{1} e_{2} \bar{f}_{3} \\ f_{1} \bar{e}_{2} f_{3} \\ \bar{f}_{1} \bar{e}_{2} f_{3} \\ \bar{f}_{1} \bar{e}_{2} \bar{f}_{3} \\ \bar{f}_{1} \bar{e}_{2} \bar{f}_{3} \\ \bar{f}_{1} \bar{e}_{2} \bar{f}_{3} \\ \bar{f}_{1} \bar{e}_{2} f_{3} \end{array}$	пев пев пев пев пев пев пев пев пев	NRRR NRRF NRFR NFRR NFRF NFRF NFRF

- Select real as tight $\rightarrow e$
- Select fake as tight $\rightarrow f$
- Select real as loose $\rightarrow \bar{e}$
- Select fake as loose $\rightarrow \overline{f}$

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

selection \rightarrow enhance fakes				
Electrons	Muons			
$p_{\rm T} > 15 {\rm GeV}$	$p_{\rm T} > 15 {\rm GeV}$			
η < 2.47	$\eta < 2.7$			
$ (1.37 < \eta < 1.52)$	-			
pass Loose LH ID	Medium LH ID			
$ d_0^{\text{BL}}/\sigma(d_0^{\text{BL}}) < 5$	$ d_{0}^{BL}/\sigma(d_{0}^{BL}) < 3$ (if $\eta < 2.5$)			
z0 <0.5	z0 <0.5 (if η < 2.5)			
+ lisolation and/or lidentification =				
I	Loose			

Looco SP. Loocon the

 Loose lepton set disjoint from tight (SR) selection set

2. Express se	lection co	ombinatio	ns		
$ \begin{pmatrix} N_{TTT} \\ N_{TL} \\ N_{TL} \\ N_{LT} \\ N_{TL} \\ N_{TL} \\ N_{TL} \\ N_{TL} \\ N_{LL} \\ N_{LL} \end{pmatrix} = \begin{pmatrix} \theta_1 \theta_2 \theta_3 \\ \theta_1 \theta_2 \theta_3 \end{pmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} f_{1} \theta_{2} f_{3} \\ f_{1} \theta_{2} \bar{f}_{3} \\ f_{1} \bar{\theta}_{2} f_{3} \\ \bar{f}_{1} \bar{\theta}_{2} \bar{f}_{3} \end{array}$	たを3 たを3 たを3 たを3 たを3 たを3 たを3 たを3 たを3 たを3	N _{RRR} N _{RRF} N _{RFR} N _{FRR} N _{FRF} N _{FRF}

- Select real as tight $\rightarrow e$
- Select fake as tight $\rightarrow f$
- Select real as loose $\rightarrow \bar{e}$
- Select fake as loose $\rightarrow \overline{f}$

3. Matrix Method N_{fake} estimate equation

 $N_{\textit{fake}} = N_{\textit{TTL}}^{\textit{red}}F_Z + N_{\textit{TLT}}^{\textit{red}}F_Z + N_{\textit{LTT}}^{\textit{red}}F_W - N_{\textit{TLL}}^{\textit{red}}F_Z F_Z - N_{\textit{LTL}}^{\textit{red}}F_W F_Z - N_{\textit{LTL}}^{\textit{red}}F_W F_Z - N_{\textit{LTT}}^{\textit{red}}F_W F_Z - N_{\textit{TT}}^{\textit{red}}F_W F_Z - N_{\textit{TT}}^{}$

befine Fake Factors
$$F_{Z/W} = \frac{f}{f} = \frac{N_{T}}{N_{T}}$$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	000000	00	0	

 Loose lepton set disjoint from tight (SR) selection set

Strategy

- 1 3 sources of reducible background \rightarrow 3 FFs
- 2 CR rich in non-prompt leptons \rightarrow Fake Factor
- 3 A value combining 3 FFs is substituted in (3) to estimate *N*_{fake}

2. Express selection combinations

$\left(\begin{array}{c}N_{TTT}\\N_{TTL}\\N_{LTT}\\N_{LTT}\\N_{LTL}\\N_{LTL}\\N_{LLT}\end{array}\right)=$	(⁶¹ 6263 6162 <u>f</u> 3 616263 6162 <u>f</u> 3 616263 6162 <u>f</u> 3 616263 616 <u>5</u> f3 616263 616 <u>5</u> f3 616263 616 <u>2</u> f3 616263 616 <u>2</u> f3 616263 616 <u>2</u> f3	$e_1 f_2 e_3$ $f_1 e_2 e_3$ $e_1 f_2 \bar{e}_3$ $f_1 e_2 \bar{e}_3$ $e_1 \bar{f}_2 e_3$ $f_1 \bar{e}_2 e_3$ $e_1 \bar{f}_2 e_3$ $f_1 \bar{e}_2 e_3$ $e_1 \bar{f}_2 \bar{e}_3$ $f_1 \bar{e}_2 \bar{e}_3$ $e_1 \bar{f}_2 \bar{e}_3$ $f_1 \bar{e}_2 \bar{e}_3$ $\bar{e}_1 f_2 e_3$ $\bar{f}_1 \bar{e}_2 e_3$	e125 f1 e25 e125 f1 e25	f1 f2 03 Иляля NRFR NRFR NRFR NRFR NRFR NRFR NRFR NRFR
--	--	---	--	---

- Select real as tight $\rightarrow e$
- $\blacksquare \text{ Select fake as tight} \rightarrow f$
- Select real as loose $\rightarrow \bar{e}$
- Select fake as loose $\rightarrow \overline{f}$

3. Matrix Method N_{fake} estimate equation

 $N_{\textit{fake}} = N_{\textit{TTL}}^{\textit{red}} F_Z + N_{\textit{TLT}}^{\textit{red}} F_Z + N_{\textit{LTT}}^{\textit{red}} F_W - N_{\textit{TLL}}^{\textit{red}} F_Z F_Z - N_{\textit{LTL}}^{\textit{red}} F_W F_Z - N_{\textit{LTL}}^{\textit{red}} F_W F_Z - N_{\textit{LTT}}^{\textit{red}} F_W F_Z - N_{\textit{TTT}}^{\textit{red}} F_W F_Z - N_$

Define Fake Factors
$$F_{Z/W} = \frac{f}{f} = \frac{N_{\rm T}}{N_{\rm T}}$$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
	00000				

Control Regions

■ Z+jets: Create Z-pair by selecting 2 likely prompt leptons and a non-isolated lepton $\begin{array}{c} \geq 2 \ Z\text{-type leptons, same-flavour and opposite charge (e^+e^- \ or \ \mu^+\mu^-)} \\ [m_{l} - m_{2}^{DG} < 15] \ \text{GeV} \\ fake lepton is highest-ρ_{T} Matrix Method lepton \\ fake electron \\ m_{1}^{W} < 30 \ \text{GeV} \\ E_{T}^{miss} < 30 \ \text{GeV} \\ E_{T}^{miss} < 30 \ \text{GeV} \\ = m_{R} > 81 \ \text{GeV} \end{array}$

• $t\bar{t}$: Select two likely prompt leptons from $t \rightarrow Wb$, while avoiding SFOC pairs.

 $\geq 1 Z \text{-type electron } e_Z \\ \geq 1 Z \text{-type muon } \mu_Z \\ \text{charge}(\mu_Z) \text{ charge}(e_Z) < 0 \\ \text{remaining highest-} \rho_T \text{ Matrix Method lepton = fake lepton } \ell_m \\ \text{lepton with different flavour than fake lepton passes W-lepton requirements: } \ell_W \\ \text{charge}(\ell_m) \text{ charge}(\ell_W) > 0 \\ \end{array}$

Z γ : Similar to Z+jets CR, however use m_{ll} window below M_Z and an m_{3l} cut. $\begin{array}{l} \geq 2 \ Z\text{-type muons, opposite charge } (\mu^+\mu^-) \\ 55 < m_{ll} < 85 \ \text{GeV} \\ m_{3l} < 105 \ \text{GeV} \\ \text{fake lepton is highest-} p_{\mathrm{T}} \ \text{Matrix Method electron} \\ m_{\mathrm{T}}^W < 30 \ \text{GeV} \\ E_{T}^{miss} < 30 \ \text{GeV} \end{array}$

	n Matrix Method /	Application Results	Summary	Backup
0 0000	000000	00	0	0000

 $\begin{array}{l} \mathsf{FF}_{\mathsf{Data}} = \\ \frac{N_{\mathcal{T}, \mathsf{Data}} - N_{\mathcal{T}, \mathsf{RL&ND}} \,_{\tilde{t}/Z + \mathsf{jets}/Z\gamma} - N_{\mathcal{T}, \mathsf{Irr.\,MC}}}{N_{\mathsf{I}\mathcal{T}, \mathsf{Data}} - N_{\mathsf{I}\mathcal{T}, \mathsf{RL&ND}} \,_{\tilde{t}/Z + \mathsf{jets}/Z\gamma} - N_{\mathsf{I}\mathcal{T}, \mathsf{Irr.\,MC}}} \end{array}$

$$\begin{array}{l} \mathsf{FF}_{\mathsf{MC}} = \\ N_{T, \,t\bar{t}/Z + jets/Z\gamma} - N_{T,\mathsf{RL\&ND} \,t\bar{t}/Z + jets/Z\gamma} \\ \overline{N_{!T, \,t\bar{t}/Z + jets/Z\gamma} - N_{!T,\mathsf{RL\&ND} \,t\bar{t}/Z + jets/Z\gamma} } \end{array}$$

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

$$\begin{array}{l} \mathsf{FF}_{\mathsf{Data}} = \\ \frac{N_{\mathcal{T}, \mathsf{Data}} - N_{\mathcal{T}, \mathsf{RL&ND}} \,_{\tilde{t}/Z + \mathsf{jets}/Z\gamma} - N_{\mathcal{T}, \mathsf{Irr. MC}}}{N_{\mathsf{I}\mathcal{T}, \mathsf{Data}} - N_{\mathsf{I}\mathcal{T}, \mathsf{RL} \mathsf{RND}} \,_{\tilde{t}/Z + \mathsf{jets}/Z\gamma} - N_{\mathsf{I}\mathcal{T}, \mathsf{Irr. MC}}} \end{array}$$

data fake factors (I stat & I stat⊕syst)

MC fake factors (| stat)

tī

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

$$\begin{array}{l} \mathsf{FF}_{\mathsf{Data}} = \\ \frac{N_{\mathcal{T}, \,\mathsf{Data}} - N_{\mathcal{T}, \mathsf{RL&ND} \, \tilde{t}^{\dagger}/Z + \mathsf{jets}/Z\gamma} - N_{\mathcal{T}, \,\mathsf{Irr.\,MC}}}{N_{\mathsf{I}\mathcal{T}, \,\mathsf{Data}} - N_{\mathsf{I}\mathcal{T}, \mathsf{RL} \mathsf{RND} \, \tilde{t}^{\dagger}/Z + \mathsf{jets}/Z\gamma} - N_{\mathsf{I}\mathcal{T}, \,\mathsf{Irr.\,MC}}} \end{array}$$

data fake factors (I stat & I stat⊕syst)

MC fake factors (I stat)

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

$$\begin{array}{l} \mathsf{FF}_{\mathsf{Data}} = \\ \frac{N_{\mathcal{T}, \mathsf{Data}} - N_{\mathcal{T}, \mathsf{RL&ND}} \,_{\tilde{t}} / Z_{+jets/Z\gamma} - N_{\mathcal{T}, \mathsf{Irr. MC}}}{N_{1\mathcal{T}, \mathsf{Data}} - N_{1\mathcal{T}, \mathsf{RL&ND}} \,_{\tilde{t}} / Z_{+jets/Z\gamma} - N_{1\mathcal{T}, \mathsf{Irr. MC}}} \end{array}$$

data fake factors (I stat & I stat⊕syst)

MC fake factors (I stat)

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

Expected Composition of Loose SR

 \leftarrow Z+jets fake background contribution is dominant, followed by $t\bar{t}$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	000000	00	0	0000

Expected Composition of Loose SR

 \leftarrow Z+jets fake background contribution is dominant, followed by $t\bar{t}$

 \downarrow Composition of Loose SR, per leptonic channel

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		000000			

Composition-Weighted Average

Utilize MC-based composition information

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		000000			

Composition-Weighted Average

- Utilize MC-based composition information
- in combining 3 Fake Factors

Average Fake Factors with Exp. Composition Combined FF = $FF_{Z+\text{jets}} \times (\% Z + \text{jets})$ $+FF_{Z\gamma} \times (\% Z\gamma)$ $+FF_{t\bar{t}} \times (\% t\bar{t})$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		000000			

Composition-Weighted Average

- Utilize MC-based composition information
- in combining 3 Fake Factors

In the end:

ightarrow 1 combined FF per Loose SR region

• FF_{LTT}, FF_{TLT} etc.

Average Fake Factors with Exp. Composition Combined FF = $FF_{Z+jets} \times (\% Z + jets)$ $+FF_{Z\gamma} \times (\% Z\gamma)$ $+FF_{t\bar{t}} \times (\% t\bar{t})$

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

 $\circ\,$ Ideally: Fake Factors calculated in 2-D bins of $p_{
m T}-\eta\,$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	000000	00	0	0000

- $\circ\,$ Ideally: Fake Factors calculated in 2-D bins of $p_{
 m T}-\eta\,$
- \Box Alternatively: η -dependent correction on FF

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		000000			

 $\circ\,$ Ideally: Fake Factors calculated in 2-D bins of $p_{
m T}-\eta\,$

 \Box Alternatively: η -dependent correction on FF

Symmetric dependence: $\mathsf{FF} \to F(|\eta|) \times \mathsf{FF}$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		000000			

- $\circ\,$ Ideally: Fake Factors calculated in 2-D bins of $p_{
 m T}-\eta\,$
- □ Alternatively: η -dependent correction on FF Symmetric dependence: FF → $F(|\eta|) \times$ FF

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		000000			

- $\circ\,$ Ideally: Fake Factors calculated in 2-D bins of $p_{
 m T}-\eta\,$
- □ Alternatively: η -dependent correction on FF Symmetric dependence: FF → $F(|\eta|) \times$ FF

 $\rightarrow\,$ Combined points from weighted average of data FFs of Z+jets and $t\bar{t},$ weights are the respective statistical errors

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		000000			

- $\circ\,$ Ideally: Fake Factors calculated in 2-D bins of $p_{
 m T}-\eta\,$
- □ Alternatively: η -dependent correction on FF Symmetric dependence: FF → $F(|\eta|) \times$ FF

- $\rightarrow\,$ Combined points from weighted average of data FFs of Z+jets and $t\bar{t},$ weights are the respective statistical errors
- \rightarrow Fit combined points with $y = ax^2 + bx + c$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		0000000			

- $\circ\,$ Ideally: Fake Factors calculated in 2-D bins of $p_{
 m T}-\eta\,$
- □ Alternatively: η -dependent correction on FF Symmetric dependence: FF → $F(|\eta|) \times$ FF

- $\rightarrow\,$ Combined points from weighted average of data FFs of Z+jets and $t\bar{t},$ weights are the respective statistical errors
- \rightarrow Fit combined points with $y = ax^2 + bx + c$

 1σ error band used to evaluate the systematic uncertainty of this correction

Introduction Select	ion Matrix Me	thod Application Results	s Summary	/ Backup
0 000	00000	00 00	0	0000

Breakdown								
Source	e Rel	eee ative uncert	μee ainties [%	<i>e</i> μμ	$\mu\mu\mu$	All		
	Tier			~1				

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	0000000	00	0	0000

1 Statistical Uncertainties of the FFs 0.5% to 4%

	Breakdown								
Source	eee Polotivo uncort	µee	eμμ	μμμ	All				
		2.05	0.00	4.00	0.55				
Fwilluon	0.00	2.95	0.00	4.30	0.55				
F _Z muon	0.00	0.00	0.32	2.31	0.31				
F _W electron	3.18	0.00	5.29	0.00	3.56				
F _Z electron	2.75	3.46	0.00	0.00	1.27				

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	0000000	00	0	0000

- 1 Statistical Uncertainties of the FFs 0.5% to 4%
- 2 15% cross-section uncertainty in Irreducible Subtraction in CR and SR 17% (35% in $\mu\mu\mu$)

Breakdown								
Source	eee	µee	еµµ	μμμ	All			
Rela	ative uncert	ainties (%	6					
F _W muon	0.00	2.95	0.00	4.36	0.55			
F _z muon	0.00	0.00	0.32	2.31	0.31			
F _W electron	3.18	0.00	5.29	0.00	3.56			
F _Z electron	2.75	3.46	0.00	0.00	1.27			
Irr. subtraction	14.28	26.32	17.40	35.61	17.43			

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	0000000	00	0	0000

1 Statistical Uncertainties of the FFs 0.5% to 4%

- 2 15% cross-section uncertainty in Irreducible Subtraction in CR and SR 17% (35% in $\mu\mu\mu$)
- Uncertainty from |η| correction:
 9% for electron fakes
 1% for muon fakes

Breakdown							
Source	eee	μee	eμμ	μμμ	All		
Relat	ve uncert	ainties [9	6]				
F _W muon	0.00	2.95	0.00	4.36	0.55		
F_{7} muon	0.00	0.00	0.32	2.31	0.31		
F _W electron	3.18	0.00	5.29	0.00	3.56		
F ₇ electron	2.75	3.46	0.00	0.00	1.27		
Irr. subtraction	14.28	26.32	17.40	35.61	17.43		
Correlated n correction (e)	9.70	8.14	9.89	0.00	8.87		
Correlated η correction (μ)	0.00	1.90	0.58	10.24	1.21		

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	0000000	00	0	0000

1 Statistical Uncertainties of the FFs 0.5% to 4%

- 2 15% cross-section uncertainty in Irreducible Subtraction in CR and SR 17% (35% in $\mu\mu\mu$)
- Uncertainty from |η| correction:
 9% for electron fakes
 1% for muon fakes
- 4 Uncertainty assigned to Weighted Average
 - → Expected Composition: 6.5% Vary expected reducible background yields by their statistical uncertainty

Breakdown								
Source	eee	μee	eμμ	μμμ	All			
Relat	ive uncert	ainties [?	6]					
F _W muon	0.00	2.95	0.00	4.36	0.55			
F _z muon	0.00	0.00	0.32	2.31	0.31			
F _W electron	3.18	0.00	5.29	0.00	3.56			
F _Z electron	2.75	3.46	0.00	0.00	1.27			
Irr. subtraction	14.28	26.32	17.40	35.61	17.43			
Correlated n correction (e)	9.70	8.14	9.89	0.00	8.87			
Correlated η correction (μ)	0.00	1.90	0.58	10.24	1.21			
W. Average Stat. Uncertainty	6.27	12.89	5.29	13.97	6.48			
Total sys.	18.85	30.82	21.38	39.90	20.99			
Stat.	2.88	5.48	1.78	1.66	1.52			
Total	19.07	31.30	21.45	39.94	21.05			
Abs	olute unce	ertainties						
Total	150.49	35.68	155.19	58.68	373.30			

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	0000000	00	0	0000

• Idea: Utilize data-driven composition of Fake Background in W.A.

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	0000000	00	0	0000

• Idea: Utilize data-driven composition of Fake Background in W.A. 1 Neural networks were trained on $t\bar{t}$, Z+jets, $Z\gamma$ events in the Loose SR

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	0000000	00	0	0000

Idea: Utilize data-driven composition of Fake Background in W.A.
Neural networks were trained on *tt*, *Z*+jets, *Z*γ events in the Loose SR
Each data and Irr. Bkg. (MC) event receives a score from the trained classifier

0

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	0000000	00	0	0000

- Idea: Utilize data-driven composition of Fake Background in W.A.
 - 1 Neural networks were trained on $t\bar{t}$, Z+jets, $Z\gamma$ events in the Loose SR
 - 2 Each data and Irr. Bkg. (MC) event receives a score from the trained classifier

3 Use scores as weights in the weighted average of FFs

Average Fake Factors with NN Score

 $\begin{array}{l} \text{Combined } \textit{FF} = \\ \textit{FF}_{\textit{Z+jets}} \times (\textit{Z} + \textit{jets NN score}) \\ + \textit{FF}_{\textit{Z}\gamma} \times (\textit{Z}\gamma \text{ NN score}) \\ + \textit{FF}_{\textit{t}\bar{t}} \times (\textit{t\bar{t} NN score}) \end{array}$

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
		0000000			

- Idea: Utilize data-driven composition of Fake Background in W.A.
 - 1 Neural networks were trained on $t\bar{t}$, Z+jets, Z γ events in the Loose SR
 - 2 Each data and Irr. Bkg. (MC) event receives a score from the trained classifier

3 Use scores as weights in the weighted average of FFs

• The per-event NN score triplet can be used to provide a data-driven Reducible Background composition.

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

Performance of trained Classifiers

Train	-Test N _{eve}	nts (80 -	- 20)
	Z+jets	$Z\gamma$	tī
Train	41766	2988	47756
Test	10442	747	11939
Val.	13052	934	14924

NN Architecture						
Num. Layers	Nodes	Drop-out	Batch Size			
2	256	40%	1024			

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

Performance of trained Classifiers

- Train-test distributions indicate smooth learning
- \circ Z+jets train-test curves flatter than $t\bar{t}$ / Z γ

Z+jets mis-classification as $Z\gamma$ leads to larger estimates, due to large $Z\gamma$ FF values contributing through the $Z\gamma$ score

Ioannis Karkanias (A.U.Th.)

HEP 2021 Thessaloniki

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	•0	0	0000

Results - Using Expected Composition

- Comparison of distribution of $|y_Z - y_{IW}|$ and p_{TZ} with Expected Reducible MC, scaled with MC Scale Factors

Shown are MM stat. errors, MM total errors and MC stat. errors

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	000000	•0	0	0000

Results - Using Expected Composition

- Comparison of distribution of $|y_Z - y_{IW}|$ and p_{TZ} with Expected Reducible MC, scaled with MC Scale Factors

Shown are MM stat. errors, MM total errors and MC stat. errors

Break-down of the result, localizing to each lepton channel.

C			-		All
Source	666	µee	θμμ	μμμ	All
$N_{LTT} \cdot F_W$	$478.3 \pm 11.0 \pm 108.9$	$23.8 \pm 0.6 \pm 26.7$	683.5 ± 12.8 ± 153.2	$44.3 \pm 0.8 \pm 43.8$	$1230.0 \pm 16.9 \pm 321.1$
$N_{TLT} \cdot F_Z$	$87.7 \pm 13.1 \pm 36.1$	$5.2 \pm 2.2 \pm 5.5$	$7.8 \pm 0.6 \pm 1.7$	$12.4 \pm 0.7 \pm 11.1$	$113.1 \pm 13.3 \pm 43.5$
$N_{TTL} \cdot F_Z$	$282.5 \pm 14.7 \pm 56.0$	$87.6 \pm 5.8 \pm 15.9$	$34.3 \pm 1.3 \pm 4.5$	$90.8 \pm 2.2 \pm 14.1$	$495.3 \pm 16.0 \pm 75.2$
-2L Terms	$-59.3 \pm 2.8 \pm 20.1$	$-2.7 \pm 0.2 \pm 1.7$	$-2.2 \pm 0.1 \pm 0.8$	$-0.6 \pm 0.0 \pm 0.4$	$-64.8 \pm 2.8 \pm 22.5$
Matrix Method result	789.24 ± 22.72 ± 148.77	$113.99 \pm 6.25 \pm 35.13$	723.53 ± 12.87 ± 154.66	$146.92 \pm 2.44 \pm 58.62$	1773.68 ± 26.96 ± 372.33
$(t\bar{t} + Z + jets + Z\gamma) MC \times SF$	565.80 ± 25.70	198.00 ± 6.60	695.50 ± 31.60	270.60 ± 9.20	1730.00 ± 42.30

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
0	00000	000000	00	0	0000

Comparison of results - Expected Comp. FF vs NN Score FF

- NNscore combined FF is in general larger \leftrightarrow contribution from large $Z\gamma$ FF values
- Larger total errors with NN, despite no systematic from Expected Composition Uncertainty due to limited Loose SR statistics ← √∑_i (w_i × FF_i)²
 ■ All-channel estimate still within error, per-channel discrepancies remain

Ioannis Karkanias (A.U.Th.)

HEP 2021 Thessaloniki

0	00000	0000000	00	•	0000
~					

Summary

- ∇ Two methods for estimating the background of the $W^{\pm}Z \rightarrow I\bar{I}I'\nu_{I'}$ analysis using the Matrix Method
 - Fake Factors are defined for 3 CRs and their combination is substituted in the Matrix Method equation for Loose SR events
 - The Fake Factors are combined with a weighted average using: either the Expected Composition of the Reducible Background or a Multivariate Classifier's scores
- ⊽ Future Investigation
 - $\circ~$ Investigation of Loose SR & CR selection leading to small fake- $\mu~$ rates for Z+jets and large Data and MC fake-*e* rates for Z $\gamma~$
 - \circ Damping of the $Z\gamma$ FF contribution in the NN score Matrix Method

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	•000

$W^{\pm}Z$ Inclusive Object Selection

Electron object selection						
Selection	Baseline selection	Z selection	W selection			
$\begin{array}{l} p_T > 5 \ GeV \\ Electron object quality \\ \eta^{Ouster} < 2.47, \ \eta < 2.5 \\ LocseLH + BL ay er identification \\ d_0^{BL}/\sigma(d_0^{BL}) < 5 \\ \Delta_z \mathcal{B}_0^L \sin \theta < 0.5 \ mm \\ ratio table a \\ ratio table a \\ \end{array}$		* * * * *	~ ~ ~ ~ ~			
e-to-μ and e-to-e overlap removal	v v	1	1			
$\begin{array}{l} e\mbox{-to-jets overlap removal}\\ p_T > 15 \mbox{ GeV}\\ Exclude 1.37 < \eta^{duster} < 1.52\\ M \mbox{ similar identification}\\ H \mbox{ sighPtC} \mbox{ alogn1y isolation} \end{array}$		\$ \$ \$ \$	\$ \$ \$ \$			
$\begin{array}{l} \rho_{T} > 20 \; GeV \\ \texttt{TightLH} \; identification \\ \texttt{FCTight isolation} \\ \texttt{Unambiguous author} \\ \texttt{DFC} \\ \texttt{OmmonAddAmbiguity} \leq 0 \end{array}$			5 5 5 5 5 5 5 5 5			

Muon object selection							
Selection	Baseline selection	Z selection	W selection				
$\begin{array}{l} \rho_{T} > 5 \mbox{ GeV } \\ \eta < 2.7 \\ \mbox{ Losse quality } \\ d_{b}^{BL}(\sigma(d_{b}^{BL}) < 3 \mbox{ (for } \eta < 2.5 \mbox{ only }) \\ \Delta_{\sigma}^{BL} \sin \theta < 0.5 \mbox{ mm (for } \eta < 2.5 \mbox{ only }) \\ Pl \mbox{ losse private a signation} \end{array}$		* * * * *	****				
$\mu\text{-jet}$ Overlap Removal $p_{\rm T}>15~{\rm GeV}$ $ \eta <2.5$ He dium quality		4 4 4 4	4 4 4 4				
pT > 20 GeV Tight quality Pf lowTight_FixedRad isolation			44				

Jet object selection

	Selection
anti- $k_t \Delta R = 0.4$	√
$p_{\rm T}>25~{ m GeV}$	 ✓
JVT $>$ 0.59 (for $p_{\rm T}$ $<$ 60 GeV & $ \eta $ $<$ 2.4)	 ✓
ΔR (jet - baseline electron) ≥ 0.2	 ✓
ΔR (jet with \leq 3 tracks - baseline muon) \geq 0.4	 ✓

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	0000000	00	0	0000

Comparison of Expected - Neural Net compositions per channel

Expected MC Compositions

Neural Network score-based Composition

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	0000000	00	0	0000

Comparison of Expected - Neural Net compositions per channel

Results of MC closure with Exp. Comp. Weighted Average of FFs

Source	000	μθθ	θμμ	μμμ	All
$N_{LTT} \cdot F_W$	478.3 ± 11.0 ± 108.9	$23.8 \pm 0.6 \pm 26.7$	683.5 ± 12.8 ± 153.2	$44.3 \pm 0.8 \pm 43.8$	$1230.0 \pm 16.9 \pm 321.1$
$N_{TLT} \cdot F_Z$	$87.7 \pm 13.1 \pm 36.1$	$5.2 \pm 2.2 \pm 5.5$	$7.8 \pm 0.6 \pm 1.7$	$12.4 \pm 0.7 \pm 11.1$	$113.1 \pm 13.3 \pm 43.5$
$N_{TTL} \cdot F_Z$	$282.5 \pm 14.7 \pm 56.0$	$87.6 \pm 5.8 \pm 15.9$	$34.3 \pm 1.3 \pm 4.5$	$90.8 \pm 2.2 \pm 14.1$	$495.3 \pm 16.0 \pm 75.2$
-2L Terms	$-59.3 \pm 2.8 \pm 20.1$	$-2.7 \pm 0.2 \pm 1.7$	$-2.2 \pm 0.1 \pm 0.8$	$-0.6 \pm 0.0 \pm 0.4$	$-64.8 \pm 2.8 \pm 22.5$
Matrix Method result	789.24 ± 22.72 ± 148.77	$113.99 \pm 6.25 \pm 35.13$	$723.53 \pm 12.87 \pm 154.66$	$146.92 \pm 2.44 \pm 58.62$	$1773.68 \pm 26.96 \pm 372.33$
$(t\bar{t} + Z+jets + Z\gamma) MC \times SF$	565.80 ± 25.70	198.00 ± 6.60	695.50 ± 31.60	270.60 ± 9.20	1730.00 ± 42.30

Results of MC closure with NN-score Weighted Average of FFs

Source	000	μ00	θμμ	μμμ	All
NLTT · FW	582.3 ± 14.9 ± 123.7	$20.9 \pm 0.5 \pm 13.8$	818.7 ± 17.4 ± 171.7	$39.7 \pm 0.7 \pm 27.2$	1461.6 ± 22.9 ± 312.0
$N_{TLT} \cdot F_Z$	$160.9 \pm 31.2 \pm 87.9$	$-1.7 \pm 24.7 \pm 56.6$	$7.4 \pm 0.5 \pm 1.8$	$12.0 \pm 0.7 \pm 3.6$	$178.7 \pm 39.8 \pm 130.9$
$N_{TTL} \cdot F_Z$	$498.4 \pm 42.3 \pm 108.0$	$215.6 \pm 35.6 \pm 91.8$	$32.5 \pm 1.2 \pm 4.4$	$85.8 \pm 2.1 \pm 12.1$	$832.2 \pm 55.3 \pm 201.3$
-2L Terms	$-284.6 \pm 32.4 \pm 112.8$	$-34.1 \pm 22.7 \pm 28.4$	$-2.0 \pm 0.1 \pm 0.6$	$-0.6 \pm 0.0 \pm 0.4$	$-321.3\pm 39.6\pm 137.7$
Matrix Method result	$957.05 \pm 63.49 \pm 187.37$	$200.67 \pm 48.89 \pm 138.76$	$856.58 \pm 17.47 \pm 172.93$	$137.00 \pm 2.35 \pm 39.78$	2151.30 ± 82.05 ± 454.55
$(t\bar{t} + Z + jets + Z\gamma) MC \times SF$	565.80 ± 25.70	198.00 ± 6.60	695.50 ± 31.60	270.60 ± 9.20	1730.00 ± 42.30

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	0000000	00	0	0000

MC Closure Distributions - $|y_Z - y_{IW}|$

- Comparison of distribution of |y_Z - y_{IW}| and Expected Reducible MC, scaled with MC Scale Factors.
- Per MC event, the weighted average of the 3 MC-derived FFs (weights being the Exp. MC composition) are used.
- Shown are MM stat. errors, MM total errors and MC stat. errors.

Ioannis Karkanias (A.U.Th.)

Introduction	Selection	Matrix Method Application	Results		Backup
0	00000	000000	00	0	0000

MC Closure Distributions - $|y_Z - y_{IW}|$

- Comparison of distribution of |y_Z - y_{IW}| and Expected Reducible MC, scaled with MC Scale Factors.
- Per MC event, the weighted average of the 3 MC-derived FFs (weights being the Exp. MC composition) are used.
- Shown are MM stat. errors, MM total errors and MC stat. errors.

Source	666	µee	θμμ	μμμ	All
$N_{LTT} \cdot F_W$	$461.4 \pm 6.5 \pm 49.7$	$34.9 \pm 0.5 \pm 43.5$	$627.0 \pm 7.0 \pm 55.6$	$67.0 \pm 0.7 \pm 49.9$	$1190.2 \pm 9.6 \pm 191.6$
$N_{TLT} \cdot F_Z$	$177.1 \pm 12.0 \pm 54.0$	$9.2\pm0.4\pm0.4$	$6.6 \pm 0.2 \pm 0.9$	$11.0 \pm 0.3 \pm 18.3$	$203.9 \pm 12.0 \pm 57.3$
$N_{TTL} \cdot F_Z$	$384.3 \pm 9.4 \pm 87.3$	$86.2 \pm 1.6 \pm 2.4$	$37.5 \pm 0.5 \pm 0.9$	$100.0 \pm 1.2 \pm 1.5$	$607.9 \pm 9.6 \pm 89.6$
-2L Terms	$-65.4 \pm 1.9 \pm 9.4$	$-2.8 \pm 0.1 \pm 0.2$	$-2.4 \pm 0.1 \pm 0.7$	$-0.5 \pm 0.0 \pm 0.4$	$-71.2 \pm 1.9 \pm 9.8$
Matrix Method result	957.32 ± 16.67 ± 112.72	127.53 ± 1.70 ± 43.57	$668.56 \pm 7.04 \pm 55.58$	$177.45 \pm 1.45 \pm 53.19$	1930.86 ± 18.23 ± 225.69
$(t\bar{t} + Z + jets + Z\gamma) MC \times SF$	565.80 ± 25.70	198.00 ± 6.60	695.50 ± 31.60	270.60 ± 9.20	1730.00 ± 42.30

Results of MC closure with Exp. Comp. Weighted Average of FFs

Introduction	Selection	Matrix Method Application	Results	Summary	Backup
					0000

Systematics of MM with NN

Breakdown (NN)

Source	666	μee	θμμ	$\mu\mu\mu$	All
Rela	tive uncer	tainties [%			
F _W muon	0.00	1.12	0.00	3.54	0.33
F _Z muon	0.00	0.00	0.23	2.32	0.24
F _W electron	5.30	0.00	14.63	0.00	8.18
F _Z electron	1.03	9.96	0.00	0.00	1.19
Correlated Irr. subtraction (CR)	3.26	6.92	7.36	26.71	6.73
Irr. subtraction (SR)	17.05	67.45	5.59	2.46	16.26
Correlated n correction (e)	7.28	9.10	10.39	0.00	8.22
Correlated η correction (μ)	0.00	0.89	0.46	10.28	0.92
W. Average Stat. Uncertainty	0.00	0.00	0.00	0.00	0.00
Total sys.	19.58	69.15	20.19	29.04	21.13
Stat.	6.63	24.36	2.04	1.72	3.81
Total	20.67	73.31	20.29	29.09	21.47
Ab	solute unc	ertainties			
Total	197.84	147.12	173.81	39.85	461.9

Breakdown (Exp. Comp.)

Source	666	μee	θμμ	μμμ	All		
Rela	ative uncer	tainties [?	6]				
F _W muon	0.00	2.95	0.00	4.36	0.55		
F _Z muon	0.00	0.00	0.32	2.31	0.31		
F _W electron	3.18	0.00	5.29	0.00	3.56		
F _Z electron	2.75	3.46	0.00	0.00	1.27		
Correlated Irr. subtraction	14.28	26.32	17.40	35.61	17.43		
Correlated η correction (e)	9.70	8.14	9.89	0.00	8.87		
Correlated η correction (μ)	0.00	1.90	0.58	10.24	1.21		
W. Average Stat. Uncertainty	6.27	12.89	5.29	13.97	6.48		
Total sys.	18.85	30.82	21.38	39.90	20.99		
Stat.	2.88	5.48	1.78	1.66	1.52		
Total	19.07	31.30	21.45	39.94	21.05		
Absolute uncertainties							
Total	150.49	35.68	155.19	58.68	373.30		