

Fast neutron spectroscopy: The nitrogenfilled Spherical Proportional Counter

I. Manthos, I. Katsioulas , P. Knights, J. Matthews, T. Neep, K. Nikolopoulos and R. Ward

HEP 2021, Thessaloniki (Online)

18/06/2021

This research has been funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No 845168 (neutronSphere)

Gaseous Detector

The need for fast neutron detection

Fast neutrons are often detected by first moderating (slowing) them to thermal energies. However, during that process the information on the original energy of the neutron, its direction of travel, and the time of emission is lost. For many applications, **the detection of "fast" neutrons that retain this information is highly desirable.** (Wikipedia)

Physics research \rightarrow Dark matter underground experiments

- Identical signature to signal events
 - Sources: Radioactivity of cavern, cosmic rays
 - Elastic scattering with target nuclei of gas, interaction with detector material

Neutron detection with gaseous detectors Current status

³He extremely expensive

³He proportional counters

Efficient for thermal and fast neutrons, low efficiency in γ-rays

Alternative technologies:

BF₃-based proportional counters

¹⁰B lined tubes

Bulk scintillators

⁶Li coated Ar-filled detectors

Toxic and corrosive

Poor efficiency, high cost

Complicated response function, limited radiation hardness, insufficient γ/n discrimination

degraded energy resolution

Wall effect \rightarrow high pressure (impractical)

Neutron detection with gaseous detectors

Desired characteristics of a fast neutron spectroscopy system (1-20 MeV range)

Neutron detection with the Spherical Proportional Counter

- Non-toxic
- Non-flammable
- Simple and robust setup
- Easy deployment and operation
- Cost efficient
- ✓ Wall effect suppressed due to higher atomic number of N relative to He → low pressure
- Good efficiency in detecting thermal neutrons in large volumes
- Low γ-ray efficiency
- Spectroscopic measurement of neutrons

Neutron detection with the Spherical Proportional Counter Comparison of neutron absorption reactions

Simulation of the detector response

Simulation Parameters: Ø vessel 30 cm Nitrogen at 300 mbar Anode Ø 2 mm

UoB simulation framework for complete simulation of a detection setup

- GEANT4 for particle transport in a geometry and their interaction with materials
- FEM simulation (ANSYS, COMSOL) of electromagnetic fields
- Garfield++ for the generation, drift and multiplication of primary electrons and signal generation

The Spherical Proportional Counter

Electric field scales as 1/r²

• Divided into "drift" and "amplification" regions

$$ec{E}=rac{V_1}{r^2}rac{r_cr_a}{r_c-r_a}\hat{r}pproxrac{V_1}{r^2}r_a$$

Capacitance independent of detector size

Low electronic noise

$$C=4\piarepsilon_0rac{r_cr_a}{r_c-r_a}pprox 4\piarepsilon_0r_a\sim 1{
m pF}$$
 .

- Large gain Single e⁻ threshold
- Maximum volume-to-surface ratio
- High pressure operation
- Simple, robust design with a flexibility in target gas
- Applications in n-spectroscopy to DM!

I.Giomataris et al, JINST, 2008, P09007

I.Katsioulas et al, JINST, 13, 2018, no.11, P11006

See also P. Knights talk

 r_c = cathode radius r_a = anode radius

Anode

Supporting rod Glass electrode

Ioannis Manthos - HEP 2021

Neutron detection with the Spherical Proportional Counter Proof of principle 241Am⁹Be spectrum

- ²⁵²Cf, ²⁴¹Am⁹Be and ambient fast neutrons
- Thermal neutrons
- N₂ at 0.1-0.5 bar
- HV ~ 6 kV

SPC 140 cm Ø Anode 8 mm Ø

BIRMINGHAM

E. Bougamont⁺, A. Dastgheibl^{*}, J. Derre⁺, J. Galan^{*}, G. Gerbier^{*}, I. Giomataris^{*}, M. Gros^{*}, I. Katsioulas^{a,c,*}, D. Jourde^a, P. Magnier^a, X.F. Navick^{*}, T. Papaevangelou^{*}, I. Savvidis^c, G. Tsiledakis^{*}

^a IRFU, Centre d'etudes de Saclay, Gif sur Yvette, France ^b Queens University, Kingston, Canada ^c Aristotle University of Thessaloniki, Thessaloniki, Greece

ARTICLE INFO

ABSTRACT

Keywords: Fast neutron detection Thermal neutron detection Neutron spectroscopy Spherical proportional counter Neutron counters A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. The pure N₂ gas is studied for thermal and fast neutron detection, providing a new way for neutron spectrococy. The neutron save detected via the ¹¹N₀, p_1 C⁴ and ¹¹N (n_c , n_t)H⁴ reactions. The detector is tested for thermal and fast neutron detection with ²³C₁ and ¹¹N (n_c , n_t)H⁴ reactions. The detector is tested for thermal and fast neutron detection with ²³C₁ and ²⁴N (n_c , n_t)H⁴ reactions. The detector is tested for thermal and phenical proportional counter with the current available neutron counters. The appendix of the spherical proportional counter with the current available neutron counters is also presented.

Ioannis Manthos - HEP 2021 Bougamont, E et al (2017). NIM A, 847, 10–14

Neutron detection with the Spherical Proportional Counter Exploit state-of-the-art advancements

Resistive Multi-anode sensor (achinos)

- Decouples drift and amplification fields
 - Small anode size → high gain
 - More anodes → Efficient charge collection
- Allows for increased target mass
 - Larger volume
 - Higher pressure

Gas purification techniques

✓ Reduce wall effect✓ Detect fast neutrons

The Graphite stack @ University of Birmingham

²⁴¹Am⁹Be neutron source A = 2.6 x 10⁶ Bq

Spherical Proportional Counter

- 30 cm Ø
- N₂ gas filling

Multi-anode sensor

- 11 anodes
- 1mm Ø
- Reading in 2 channels

Investigate the capability of the SPC to detect fast neutrons and neutrons thermalized by the graphite.

Neutron measurements @ University of Birmingham

- Getter Filter purifies Nitrogen
- HV power supply
- Coaxial feedthrough
- 2 ortec preamp
- "CALI" box digitizer
- Acquisition PC

- Calibration measurements
- Thermal and fast neutrons at 1 bar and [3.6, 4.2] kV bias
- Thermal and fast neutrons at 1.5 bar and 4.5 kV bias
- Thermal neutrons at 2 bar and 5 kV bias

Neutron measurements with the Spherical Proportional Counter

Pulse shape quality criteria:

- Rise time (10-90%)
- Fall time (exponential fit)

• FWHM/Amplitude

Neutron measurements with the Spherical Proportional Counter Calibration of the detector

٠

Getter filter emits ²²²Rn,

Confirm Radon decay

٠

Neutron measurements with the Spherical Proportional Counter ²⁴¹Am⁹Be neutron source 1 bar N₂, 3.6 kV

Response of near channel to thermal neutrons

Thermal peak correspond to 625keV recoil energy ($^{14}N + n \rightarrow {}^{14}C + p + 625$ keV)

Ioannis Manthos - HEP 2021

Neutron measurements with the Spherical Proportional Counter ²⁴¹Am⁹Be neutron source

• Thermal neutrons peak follows exponential form for various biases

 Simulation study: Probability of each neutron to reach detector volume after thermalized in graphite stack (~5x10⁻³)

Neutron measurements with the Spherical Proportional Counter ²⁴¹Am⁹Be neutron source

1 bar N₂, 3.8 kV

Detection of fast neutrons

Ioannis Manthos - HEP 2021

Neutron measurements with the Spherical Proportional Counter ²⁴¹Am⁹Be neutron source

1.5 bar N₂, 4.5 kV

Neutron measurements with the Spherical Proportional Counter ²⁴¹Am⁹Be neutron source

 $2 \text{ bar } N_2, 5 \text{ kV}$

Thermal neutrons detection

Activities at the Boulby Underground Laboratory

- Underground facility 1100 m under surface, North Yorkshire (UK)
- Instrumentation R&D and neutron measurements at controlled environment.
- 30cm Ø Spherical Proportional Counter installed and operating

Ioannis Manthos - HEP 2021

Science and Technology Facilities Council

Boulby Underground Laboratory

See also J. Matthews talk

20

Activities at the Boulby Underground Laboratory

Instrumentation R&D and neutron measurements at controlled environment.

- ²⁵²Cf neutron source available
- Data acquisition ongoing

Science and

Technology Facilities Council

Boulby Underground

Laboratory

Ioannis Manthos - HEP 2021

Neutron detection with the Spherical Proportional Counter Summary

- Neutron measurements set up accomplished
- Graphite stack facility on Birmingham
- Performed 1st phase of characterization
- Corresponding measurements in Boulby ongoing
- Mono-energetic neutron measurement (possibly @ Demokritos, Greece)
- Medical application Measurement of energy spectra of the neutroninduced dose to patients during proton therapy treatment sessions @ MC40 cyclotron facility (UoB)

UNIVERSITY

Thank you for your attention!

00