BSM Physics Opportunities at DUNE

Workshop on Neutrino-Nucleus Interactions in the Standard Model and Beyond

> January 17 – 21, 2022 Jaehoon Yu University of Texas at Arlington

Introduction

- •What makes DUNE good for BSM?
- •BSM Physics Topics at DUNE
- •Backgrounds to BSM

Conclusions

DUNE Physics Motivation

- The neutrino sector in SM needs a modification to reflect $m_{v}!$
 - Precision measurements of the oscillation parameters
 - Mixing angles and mass hierarchy
 - Studying the CPV in ν sector and precisely measuring the CP phase
 - Do neutrinos and anti-neutrinos oscillate the same way?
- These could lead to a new symmetry
- The question of the grand unification
 - Energy scale of the unification and nucleon decay
- Understanding particles of astrophysical origin
 - Supernova, blackhole formation, relic neutrinos, dark matter, etc
- These require high statistics samples
 - Large mass, large volume and highly capable (near and far) detectors
 - High intensity neutrino beam facility with a long baseline

BSM@nu, the genesis

- BSM@nu picked up steam after the 2013 U.S. Snowmass exercise
- Must leverage the neutrino facility capabilities for precision oscillation measurements to the next step
- Need to further increase community interests on BSM opportunities and complement those in the EF regime
- Need a strategic plan to strengthen the fundamental measurements, such as $\nu\text{-N}$ xsec, to support precision measurements
- Need to think about managing and mitigating background from "neutrino interactions"
- Important to play a leadership role in expanding physics opportunities
- Low E capabilities of the detectors could expand BSM kinematic reach
- A paper on ROP covers some of these opportunities (Argüelles *et al.*, <u>https://iopscience.iop.org/article/10.1088/1361-6633/ab9d12</u>)</u>

Deep Underground Neutrino Experiment (DUNE)

- Per the 2013 2014 strategic planning of the communities in the three regions, an effort of building a next generation international neutrino experiment is in progress in the U.S.
- Joint efforts of teams from all three regions Americas, Europe and Asia – US flagship hosted by Fermilab
- DUNE far detector TDR completed and published in 2020
 - <u>https://iopscience.iop.org/article/10.1088/1748-0221/15/08/T08008;</u>
 - <u>https://iopscience.iop.org/article/10.1088/1748-0221/15/08/T08009;</u>
 - <u>https://iopscience.iop.org/article/10.1088/1748-0221/15/08/T08010</u>
- LAr TPC precision 3D imaging detectors → Potential to employ multiple technologies within one experiment, systematic x-check
- LBNF (Long Baseline Neutrino Facility) far site construction approved by US DOE in Sept. 2016
 - Fundamental safety and construction infrastructure completed in 2021
 - A full-fledged cavern excavation ongoing!

Anatomy of DUNE

The DUNE Near Detector Complex Concept

 SAND(System for On-Axis neutrino Detection): Monitors on-axis v beam flux to the FD; Consists of a straw tube tracker + ECAL equipped with a 0.6T magnet

January 21, 2022

Images in DUNE LAr-TPC Prototypes

Throughgoing μ

Electromagnetic shower + two muon decays

Multiple hadronic interactions in a shower

BSM Physics Topics at DUNE

- High beam power, large detector mass + highly capable, precision near and far detectors with low E threshold make BSM physics viable
 - Signal to background ratio grows by the sqrt of the beam power
 - Near Detector Searches → Take advantage of high beam power
 - Low mass Dark Matter (LDM)
 - Axion-like Particles (ALP)
 - Heavy Neutral Leptons (HNL)
 - Milli-charge Particles (mCP)
 - Neutrino Trident
 - Far Detector Searches \rightarrow Take advantage of ND, large V_A FD and long baseline
 - Sterile neutrino searches
 - Non-standard Interactions, Non-Unitarity, CPT violation
 - Large Extra Dimensions (LED)
 - Boosted Dark Matter (BDM)/ Inelastic Boosted Dark Matter (iBDM)
- Promote strong collaboration of theorists and experimentalists
- Some of these topics covered in EPJ C.81, 322 (2021)

January 21, 2022

BSM@v Physics Signatures at ND

 High intensity proton beams produce large number of photons from brem, DY or neutral mesons decays → Make it possible to contemplate couplings of new U(1) gauge to the SM γ

• Detection through an electron, μ , N(n) recoil or 1, 2 γ final

9

ALP Searches @ DUNE ND

- Axion-like particles can be produced via the Primakoff process in high intensity proton beams
- Detection via the inverse Primakoff process either in a scattering with e/N + γ or decays of the ALP to two γ
 □ ν_e CC, NC backgrounds
 □ ν_u NC → π⁰ → γγ bck
- DUNE ND has a potential to fully close the cosmic triangle
- Brdar *et al.*, <u>PRL126,</u> <u>201801 (2021)</u> January 21, 2022

LDM Search and Low E Threshold

- LDM's produced in the target via coupling of dark photon with a SM γ from brem, scalar meson decays or direct DY
- Identify the signal using e⁻ or nucleon recoil by LDM via dark photon kinetic coupling with SM γ
 - Batell et al. [0906.5614],
 - deNiverville et al. [1205.3499]
 - Coloma et al. [1512.03852]
- Ability to identify e⁻ recoil w/ low E threshold key
 - Expands the LDM mass coverage
 - Recoil E_e peaks at low E for low LDM mass
 - Significant background from v_{μ} scattering off e⁻
- Search benefits greatly from DUNE PRISM for neutral meson induced LDM
 - Leverage more rapid reduction of v_{μ} flux than \sim the signal off-axis (De Romeri *et al.*, <u>PRD100</u>, <u>095010</u>, 2019)

January 21, 2022

Milli-Charged Particle Search

- mCP w/ charge < Q_{quark}
- Production via meson decays or DY
- Identify the signal using multiple e⁻ recoils by mCP and link them to point back to the source position & reject non-beam backgrounds
 - Tested with ArgoNEUT (~0.17m³)
 - Ability to identify e⁻ recoil w/ ~<MeV E threshold enables this method possible
 - Enabling virtually background free search
 - DUNE ND V~60m³~350*V_{ArgoNEUT}
 - Difference in the beam E and large POT produce large number of mCP in a broad mCP mass range
 - 570m distance from target to ND could cause matter effect

January 21, 2022

Dark Photon Search

- New U(1) could kinetically mix with a SM γ from scalar meson decays or direct DY
- If these dark photons can live sufficiently long to reach the DUNE ND → Look for their decays to a charged lepton pair
 - $A' \rightarrow e^+e^-$
 - Primary background from $\pi^0 \rightarrow \gamma \gamma$
 - One of the γ mid-ID's as e and one missed
 - Could a magnet help?
 - $A' \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
 - Charged pion production from CC
 - Charged π decay product mixing with other low E hadronic activities
 - Low E threshold & precise understandings of CCQE and CCRES essential

High intensity proton beams produce heavy

- neutral leptons from the decays of heavy mesons in the target
- HNL then decays into charged leptons and lighter mesons in the DUNE ND complex \rightarrow charge lepton + a meson, 2 charged leptons + v
 - Vertex requirements would help
- Multiple production and decay channels available for searches
- Coloma et al., (2007.03701)

Signatures of BSM@v

BSM signal final states include charged leptons (e+/-, μ +/-), photons and nucleus (nucleon) recoil $\rightarrow \nu$ -N interactions the primary background

Process	Signatures	Background
ALP	Scattering: γ+e/ γ+N (n) Decay in flight : γγ	ν coherent, NC w/ $\pi^{\rm 0},\nu_{\rm e}$ CC w/ $\pi^{\rm 0},{\rm etc}$
LDM	χe⁻→χe⁻, χN→N'n	NC w/ $\pi^{0,}\nu_{e}$ CC, QE, RES
mCP	Multiple e- scatterings	$ m v_e$ CC w/ π^0
Dark Photon	A->e⁻e⁺, μ⁻μ⁺	v CC + mis-ID π , Accidental overlap of CC
HNL	$\begin{split} N &\rightarrow \nu e^- e^+, \nu \mu^- \mu^+, \nu e \mu, \nu \pi^0, \\ e \pi, \mu \pi \end{split}$	v CC + mis-ID π , v _e CC w/ π^0
v trident	v→ve ⁻ e ⁺ , vµ ⁻ µ ⁺ , veµ	ν_{μ} N \rightarrow $\nu_{\mu}\pi$ N \square (ν CC)
BDM/ iBDM	χN→e⁻N	ν coherent, NC w/ $\pi^{\rm 0},\nu_{\rm e}$ CC

Low Energy v Interactions

- QE and RES dominate $\nu\text{-N}$ interactions in DUNE E_{ν} range where the two oscillation maxima reside

Jaehoon Yu

- QE & RES critical to understanding background to BSM
- Large uncertainties for v-N x-sec calculations in the critical region
 - Precision calculations w/ improved nuclear models and event generations essential for oscillation physics
 - Planned measurement, such as at e4v collaboration could provide critical missing info
 - Need to clearly identify the list of measurements that can help improving calculations and prioritize them to target low hanging fruits first January 21, 2022

Tails, tails, tails

- BSM effects extremely rare and are in the tail ends of the SM processes → can easily be masked by SM fluctuations
- Many theoretical predictions and generators for v–N interactions have been in existence and continue making remarkable improvements → but they still have sizeable uncertainties within each and between themselves

We learned at this workshop..

Tails, tails, tails, and tails

- BSM effects extremely rare and are in the tail ends of the SM processes
 → can easily be masked by SM fluctuations
- Many different theoretical predictions and generators for v−N have been in existence and continue improving → but they still have sizeable uncertainties within each and between themselves
 - Significantly reducing the uncertainties critical for B&B osc. physics
 - Essential for estimating backgrounds to BSM searches
- Generators begin to incorporate BSM processes but could take a long time to implement due to insufficient resources → need further strengthening the efforts
 - Strong collaborations between generator teams and experiments a way to boost
 - NP and HEP communities must work together to understand low E processes
 - In addition, we need more concerted efforts and get them done in a timely fashion

Conclusions

- The high intensity proton beams for next generation neutrino experiments enable expanding physics reach beyond that of neutrinos and the SM
- Large scale, precision 3D imaging capability DUNE detectors fit to probe a broad scope of BSM physics
 - Enormous opportunities to search for BSM signatures at DUNE ND and FD combinations
- Accessing yet-to-be-explored kinematic phase space requires precision detectors with as low E threshold as possible
 - Backgrounds from non-beam sources could be well rejected w/ low E electron detection capability and pointing back to the target
 - Neutrino interactions will be the significant background to BSM signatures
- In theory front, it is fundamental
 - To develop innovative tools for BSM signature calculations and generator
 - To significantly improve precision of the neutrino-Nucleus interactions

