The Giessen Model for vA reactions

Ulrich Mosel

Institut für Theoretische Physik

Intro

- Neutrino oscillation parameters require a reconstruction of the incoming neutrino energy
- Energy reconstruction requires generators
- The quality of the ultimate physics result (oscillation parameters, phases, neutrino mass ordering) depends on quality of the generator
- The generator must be as much state-of-the-art as the experimental equipment
- This talk concentrates on problems related to energy reconstruction and generators.

v-A Processes

All these processes are entangled, cannot be separated experimentally.

For Mini/MicroBooNE,T2K: physics is reasonably well described by QE and Δ resonance excitation Both are entangled; pion reabsorption essential

For DUNE:

Must have explicit inelastic excitations and DIS

→ Need full final state, semi-inclusive

Giessen Model: Theory and Generator

Initial State Interactions

- Nucleons are bound in a momentum-dep mean-field potential
- Treats all ISI processes: QE, RES, 2p2h, DIS (switch to DIS = PYTHIA at W ~ 2 3 GeV)
- The low-energy part similar to Valencia model, but binds nuclei
- Contains large number of N* resonances and mesons, up to charm
- Not restricted to the low energies of Valencia model

Final State Interactions: quantum-kinetic transport theory

- Contains elastic and inelastic FSI, tries to respect time-reversal invariance
- Fully relativistic transport in potential, trajectories numerically integrated
- Relativistically correct collision criteria for FSI
- Allows for off-shell transport of broad spectral functions
- Contains modelling of color transparency, formation times

Giessen model ingredients

- Baryon Resonances up to $W \sim 2$ GeV transported explicitly, with properties from PDG, lifetime determined by widths
- DIS Processes (W > 2 GeV) described by string fragmentation (PYTHIA), lifetime determined by fragmentation time-scale, no external `formation times`:

K. Gallmeister, U. Mosel ``Time Dependent Hadronization via HERMES and EMC Data Consistency'' Nucl. Phys. A **801**(2008) 68

K. Gallmeister, T. Falter
``Space-time picture of fragmentation in PYTHIA/JETSET for HERMES and RHIC"
Phys. Lett. B **630** (2005) 40

Problem: Cross section development during these `formation times`, often taken to be 0, e.g. GENIE: no interactions within 0.342 fm/c! Contradicts experiments!

- Giessen Model implemented in the generator GiBUU
- GiBUU: Quantum-Kinetic Theory and Event Generator based on a BM solution of Kadanoff-Baym equations
- GiBUU propagates phase-space distributions, not particles
- Physics content and details of implementation in: Buss et al, Phys. Rept. 512 (2012) 1-124
- Code from gibuu.hepforge.org, new version GiBUU 2021, soon v 2022

Correctness

CT identification needs reliable FSI description

- Kadanoff-Baym equation (1960s)
 - o full equation not (yet) feasible for real world problems
 - Boltzmann-Uehling-Uhlenbeck (BUU) models: GiBUU
 - Boltzmann equation as gradient expansion of Kadanoff-Baym equations, in Botermans-Malfliet representation (1990s) with off-shell transport
 - Cascade models (typical event generators, GENIE, NEUT, NuWro, ...)
 - Nuclei not bound, no mean-fields, primary interactions and FSI not consistent, frozen nuclear configuration,
 - Purely absorptive Cascade: Glauber

Quantum-kinetic Transport Theory

$$\mathcal{D}F(x,p) = \{p_0 - H, F\}_{PB} = \frac{\partial(p_0 - H)}{\partial x} \frac{\partial F}{\partial p} - \frac{\partial(p_0 - H)}{\partial p} \frac{\partial F}{\partial x}$$

H contains mean-field potentials

Describes time-evolution of F(x,p)

$$F(x,p) = 2\pi g f(x,p) \mathcal{P}(x,p)$$

Spectral function

Phase space distribution

KB equations with BM offshell term
CERN 01/22

GiBUU Tests

- Widely tested on
 - heavy-ion reactions (< 20 AGeV), p + A, π + A
 - mainly FSI tests
 - (e, A) reactions (JLAB: E < 6 GeV, HERMES: 28 GeV, EMC: 230 GeV)</p>
 - \bullet (v, A) reactions (MiniBooNE, MicroBooNE, T2K, MINERvA)

Check: pions, protons

(Leitner et al, https://inspirehep.net/literature/819969 (2009))

Proton transparency

Pion reaction Xsect.

- --- no potential
- --- Coulomb only
- --- Coulomb + nuclear

Inclusive Electron X-Sections

Necessary (vector couplings),
 but not sufficient (axial couplings) test

Only indirect, weak test for FSI

Not sufficient for energy-reconstruction

Inclusive QE Electron Scattering

a necessary check for any generator development

0.24 GeV, 36 deg, $Q^2 = 0.02 \text{ GeV}^2$

Target: C

0.56 GeV, 60 deg, $Q^2 = 0.24 \text{ GeV}^2$

Uncertainties at lower energies

- At T2K, MicroBooNE energies:
 - Theory of QE and 2p2h reasonably well under control
 - Δ resonance can be pinned down by simultaneous analysis of incl. X-sections and π -production Problem is energy reconstruction via QE-like processes, because QE and pion production with subsequent pion absorption are entangled:
 - exp $Ip0\pi$ is not QE!!! Problem for e4nu, SUSA
- Tuning generator to e-data (e-GENIE) does not help, entanglement is physics, not generator problem, need to describe consistently QE, 2p2h and Δ resonance excitation

Inclusive Electron X-section

Data: Dai et al, PRC98 (2018) 014617

GiBUU theory: Mosel et al, PRC 99 (2019) 6

 $E = 2.22 \text{ GeV}, \theta = 15.5 \text{ deg}$

Inclusive v X-section at E_v ~ 6 GeV

Data: MINERvA ME, Ruterbories et al, PRC 104 (2021) 9

DIS and RES dominate:

DIS is uncertain at these (for pQCD) relatively low energies RES is uncertain because of axial couplings to resonances

Uncertainties at higher energies (SIS)

- At NOvA, MINERvA and DUNE energies:
 - Higher resonances ($> \Delta$, SIS region) explored by present experiments

No info from e-A reactions axial coupling to resonances is uncertain

Axial coupling of spin 3/2 resonances: Up to 100% uncertainty in X-section (Lalakulich and Paschos, PR D74 (2006) 014009

Difference of MINERvA and NOvA is nearly pure RES and SIS

Neutrinos: Uncertainties in SIS

From Lalakulich, Paschos, Piranishvili (PR D74 (2006) 014009 Transition operator to spin-3/2 resonances:

$$\begin{split} d^{\lambda\nu}_{D_{13}} &= g^{\lambda\nu} \left[\frac{C_3^V}{m_N} \not q + \frac{C_4^V}{m_N^2} (p'q) + \frac{C_5^V}{m_N^2} (pq) + C_6^V \right] - q^{\lambda} \left[\frac{C_3^V}{m_N} \gamma^{\nu} + \frac{C_4^V}{m_N^2} p'^{\nu} + \frac{C_5^V}{m_N^2} p^{\nu} \right] \\ &+ g^{\lambda\nu} \left[\frac{C_3^A}{m_N} \not q + \frac{C_4^A}{m_N^2} (p'q) \right] \gamma_5 - q^{\lambda} \left[\frac{C_3^A}{m_N} \gamma^{\nu} + \frac{C_4^A}{m_N^2} p'^{\nu} \right] \gamma_5 + \left[g^{\lambda\nu} C_5^A + q^{\lambda} q^{\nu} \frac{C_6^A}{m_N^2} \right] \gamma_5. \end{split}$$

known

not known

Interference terms between various axial formfactors can double the cross section!

Info obtainable only from inclusive neutrino X-sections

Energy Reconstruction at Higher Energies

- At NOvA, MINERvA and DUNE need calorimetric method to reconstruct incoming energy → need full final state information, inclusive is not enough!
- Final State Interactions are identical for electrons and neutrinos: final state particles do not remember how they were initially produced
 - → no uncertainty stemming from axial coupling
 - > semi-inclusive electron data can give relevant (and necessary) info on FSI
- Baryon spectra and multiplicities to fix and check FSI treatment are needed, for NOvA, MINERvA, DUNE semi-inclusive DIS (SIDIS) is relevant

SIDIS: Pions at 5 GeV@JLAB

Attenuation ratios

Data:

Moran et al, Phys.Rev.C 105 (2022) 1 Theory: GiBUU

SIDIS at higher energies

N. Bianchi / Nuclear Physics A 783 (2007) 93c–100c

K. Gallmeister, U.M. Nucl.Phys.A 801 (2008) 68-79

HERMES Experiment: 28 GeV positrons or electrons, 2N attenuation

Curves: GiBUU

FSI effects in energy spectra

Strong avalanche effect: pileup of baryons at low energies

strong rise sets in below ~1.5 GeV kinetic energy, reflects strong rise of NN X-sections at this energy

Target: W, 1 TeV for FPF project

Fundamental open problems

JLAB 2021

Where isColor Transparency ??? Needs generator to follow struck hadrons through nuclear target

tension with electrons:
needs generator to reconstruct Bjorken x

Summary

- Low-energy' experiments are dominated by QE, 2p2h, △. Energy reconstruction can rely on QE-like processes, but needs generator to separate out true QE. Even there the generator must go beyond models for inclusive Xsections (also for experimental analyses of semi-inclusive electron data).
- High-energy' experiments have large contributions from SIS and DIS. Energy reconstruction needs calorimetric method and needs reliable generators for semiinclusive X-sections in SIS/DIS regime
 - Axial properties of N* resonances are quite uncertain, inclusive X-sections can give info on SIS region.
 - Semi-inclusive electron data are dominated by FSI, i.e. independent of axial uncertainties -> crucial tests for generators are final state particle spectra and multiplicities. Few electron-SIDIS data are available in the DUNE energy regime (few GeV) and so far no neutrino data.

Fundamental open problems

- Construct a generator that is theoretically as much state-of-the-art as the experimental equipment.
- Use state-of-the-art nuclear structure and reaction theory to get away from tuning unphysical parameters.
- Ultimate problem: obtain sufficient funding (and long-range jobs for younger scientists) for such a development which has to start now to be ready for the start of DUNE
 - One possible solution: bring generator-theory into the CERN neutrino platform, needs transatlantic funding scheme between CERN and FNAL

Time Course of a (γ, ν) A Reaction

- First, initial state (IS) interaction of incoming boson (γ , W, Z) with Fermi-moving nucleon bound in a groundstate potential
 - -> initially produced final state hadrons are affected by that potential
- Initial starting points for hadron FS transport are anywhere within the nuclear volume; photons and neutrinos illuminate the whole nucleus.
- Second, final state (FS) interaction of the produced hadrons in that same potential, move out through the nucleus to detector
 - → IS and FS do not factorize!

FPF, I TeV, incl. distributions

Dominated by DIS, have to worry about Color Transparency in FSI:

$$\frac{\sigma^*(t)}{\sigma} = X_0 + (1 - X_0) \cdot \left(\frac{t - t_P}{t_F - t_P}\right), \quad X_0 = r_{\text{lead}} \frac{\text{const}}{Q^2}, \quad \text{Farrar, Strikman et al}$$

describes JLAB and HERMES hadronization data, also EMC

