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Measuring Oscillations

(/ Detecting Neutrinos)



Neutrinos are detected following their 
interaction with nuclei







=> Experiments detect interaction and use 
theory to deconvolute the 𝜈 Flux.
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Constrain theory input?

Theory InputWanted

No oscillations @ L=0:
è ɸ(E, L=0) known
è using ‘near detector’ (@L=0) to constrain 𝜎(E) & f𝜎(E,Erec)



Constrain theory input?

But… near detector offer integral 
constrain with a different flux from 
the far detector
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Measured Theory InputWanted



Interaction theory already main systematic!

T2K 2017, 18’



Why? Nuclear Interactions Are Complex!
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Current event-generator models are often: 
Effective. Often Empirical. Semi-Classical (no interference) 

=> MUST TUNE TO DATA!



• e & 𝜈 interact similarly.

• Many nuclear effects identical 
(FSI, multi-N effects, …).

• e beam energy is known 

• Test 𝜈 event generators by running in e-mode 
(turn off axial response).
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Constrain Using Electron Scattering!



2.26 GeV on 12C.  

1𝑝0𝜋 events,
𝜃!"#$%& > 15∘.

e & 𝜈 interact similarly

Papadopoulou and Ashkenazi et al (e4ν
collaboration) Phys. Rev. D 103, 113003 (2021).
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Constrain Using Electron Scattering!
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Attacking the Monster From All Sides

e-scattering 𝛎-scattering

Event-Generators

𝜈 A
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• Vector currents
• Nuclear FSI
• Ground state
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Attacking the Monster From All Sides

e-scattering 𝛎-scattering

Event-Generators

𝜈 near-detector:
• Axial & Vector-

Axial currents
• Ultra-low Q2

• …

Monochromatic e-:
• Vector currents
• Nuclear FSI
• Ground state
• … 𝜈 A

Must reproduce e- & 𝜈 data 
to extract oscillation 

parameters.



𝜈 A
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e-scattering

Event-Generators

𝛎-scattering

New Paradigm for Precision Oscillation Studies



“We’ve been throwing electrons at nuclei for over 40 years –
why new data?”
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General situation: lots of data, mostly irrelevant:

• A(e,e’): measured extensively; well described by scaling.

• A(e,e’p): measured primarily around the QE peak. 
Usually reported as ratio to theory.

• A(e,e’n), A(e,e’NN): Sparse data, especially @ GeV energies.

• Resonance production: lacking systematic data on nuclei 

and at large multiplicities.
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General situation: lots of data, mostly irrelevant:

• A(e,e’): measured extensively; overall well understood.

• A(e,e’p): measured primarily around the QE peak. 
Usually reported as ratio to theory.

• A(e,e’n), A(e,e’NN): Sparse data, especially @ GeV energies.

• Resonance production: lacking systematic data on nuclei 

and at large multiplicities.
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Generator vs. (e,e’)

When  we started…
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Generator vs. (e,e’)

…Today

v3 v3

Papadopoulou and Ashkenazi et al (e4ν
collaboration) Phys. Rev. D 103, 113003 (2021).



MicroBooNE PRL 123, 131801 (2019)

Also works for inclusive 𝜈
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Need New Exclusive Data!



New Old 
Data!
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A CB

D
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² ~4𝜋 acceptance (almost).

²Charged particles (8-143o):
§ Pp>300 MeV/c
§ P𝜋 >150 MeV/c

²Neutral particles: 
§ EM calorimeter (8-75o) 
§ TOF (8-143o)

CLAS-6



𝑝!"# ≈ 300 MeV/c 𝑝!"# ≈ 150 MeV/c

CLAS-6 Coverage



Targets:
4He, 12C, & 56Fe.

Energies:  
4.4, 2.2 & 1.1 GeV.
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New ‘Old’ Data: CLAS-6 @ JLab

1.1 GeV 4.4 GeV2.2 GeV
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Sanity Check: inclusive cross-sections
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Goal: Use CLAS data to study Ebeam reconstruction and 
vector-current cross-sections for different energies / nuclei.

Means (for QE study):

• Select ‘clean’ (e,e'p) events (no 𝜋, 2nd p, ...),

• Reweight by 𝜎e-N / 𝜎𝝂 -N (Q4), 

• Analyze as ‘neutrino data’ (assume unknown Ebeam),

• Reconstruct Ebeam using different methods,

• Compare to theory (GENIE) predictions.

Playing the Neutrino Game
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Adding Radiation to GENIE

JLab Hall-A 
1H(e,e’p)



𝛾 from 𝜋. 𝛾 from 𝜋.

𝛾 from Batman

Radiated 𝛾

Excluding Radiation in data



𝛾 from 𝜋. 𝛾 from 𝜋.

Radiated 𝛾

Excluding Radiation in data
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Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e’p) events.

p

𝜋

Non-1p0𝜋 Background Subtraction
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(e,e'pπ )
e

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e’p) events.

Data Driven Correction:
1. Use measured (e,e’p𝜋) events,
2. Rotate 𝜋 around q to

determine its acceptance,
3. Subtract (e,e’p𝜋) contributions

Non-1p0𝜋 Background Subtraction
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0     1     2      3

Nπ ±N p

0     1     2      3

pion multiplicityProton multiplicity

Data Driven Correction:
1. Use measured (e,e’p𝜋) events,
2. Rotate 𝜋 around q to

determine its acceptance,
3. Subtract (e,e’p𝜋) contributions
4. Do the same for 2p, 3p 2p+ 𝜋 etc.

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e’p) events.

(e,e'pπ )
e

Non-1p0𝜋 Background Subtraction
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0     1     2      3

Nπ ±N p

0     1     2      3

pion multiplicityProton multiplicity

Data Driven Correction:
1. Use measured (e,e’p𝜋) events,
2. Rotate 𝜋 around q to

determine its acceptance,
3. Subtract (e,e’p𝜋) contributions
4. Do the same for 2p, 3p 2p+ 𝜋 etc.

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e’p) events.

No cuts

No det. 𝜋/𝛾

subtract 𝜋/𝛾

True 0𝜋 event sample!

Non-1p0𝜋 Background Subtraction



Energy Reconstruction



(e,e’) Data-Theory Disagreements

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).



(e,e’) Data-Theory Disagreements

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).

Inclusive cross-section was shown  
to be overall well reproduced.

But… Energy reconstruction is not!



Energy Reconstruction
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(e,e’p) Energy Reconstruction

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).



Gest worse as A & E increase…

61
Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).



Transverse Constraints

Overestimation of 
QE peak & RES tail 

PT = | PT
e’ + PT

p |

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).



Transverse Constraints

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).



Also… Issues @ high-energy!
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Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).



Also… Issues \w Particle Multiplicities

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).
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New CLAS-12 data
Targets: 

4He, 12C, 16O, 40Ar, 120Sn

Beam Energies: 
1.1, 2.2, 4.4, 6.6 GeV
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Targets: 
4He, 12C, 16O, 40Ar, 120Sn

Beam Energies: 
1.1, 2.2, 4.4, 6.6 GeV

CLAS12 Spectrometer: 
• Luminosity: x10 higher than CLAS6
• Charged Particles: 5o – 120o

• Neutrons: 5o – 120o + 160o – 170o

• Threshold: ~300 MeV/c

=> High stat. semi-inclusive and 
exclusive data sets on multiple 
targets at multiple energies. Unique hadronic models test!
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New CLAS-12 data



Overwhelming Community Support

MINERvA
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Growing Collaboration!

+

Join us!
?



WAIT…. 

This is all Vector (e)! 
What about Axial (𝜈)?
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𝜈 A



𝜈 A

e-scattering

71

Attacking the Monster From All Sides

Event-Generators

𝛎-scattering
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𝜈-Ar cross-section measurement  @
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World-Data is limited
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World-Data is limited
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First Exclusive Cross-section Measurements

MicroBooNE PRL (2020).
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Issues at forward angles

MicroBooNE PRL (2020).
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Overall good agreement with theory outside small 
angle region

MicroBooNE PRL (2020).
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Lots of high-statistics data coming!



Afroditi
Papadopoulou

Dr. Adi 
Ashkenazi

Dr. Josh 
Barrow

MITAU MicroBooNE Group
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New Paradigm for Precision Oscillation Studies

e-scattering

Event-Generators

𝜈 A

𝛎-scattering
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Event-Generators

𝜈 A

𝛎-scatteringe-scattering

PRL 
(2020)

PRD 
(2021)

Nature 
(2021)


