Ara Ioannisian , YerPhI and ITPM, Armenia

- main uncertainties in $\nu + A$ comes from FSI and MBI.
- ► theoretically it is very difficult → phenomenology
- ▶ to learn FSI and MBI in $\nu + A$ (A=C,O,Ar) from $\gamma + A$
- CEBAF, MAMI A2 Mainz, …
- ► MAMI A2 experiment (real photons 40-1600 MeV) $\gamma + A \rightarrow \pi^0 + X$
- we need 3D (for different incoming photon energy) dependance on momentum of outgoing π^0 and direction
- We propose to the A2 to collect that 3D data for A=C, O, Ar.
- That will be HUGE contribution from A2 to neutrino physics
- predictions for bound nucleon decay in nuclei (C,O,Ar) JUNO, HyperK, DUNE

Figure: Plots from A2. Inclusive π^0 production cross sections $\gamma + A \rightarrow \pi^0 + X$, $A_{eff} = 1$ for proton, $A_{eff} = 2$ for deuteron and $A_{eff} = A^{2/3}$ for nuclei. σ^+ is the cross section of $\gamma + p \rightarrow n + \pi^+$. $\gamma + A \rightarrow X$ is (per nucleon) photo-absorption cross section on nuclei, $A_{eff} = A$.