PHYSLITE dask tests (on Fernando's jupyter hub)

Nikolai Hartmann

LMU Munich

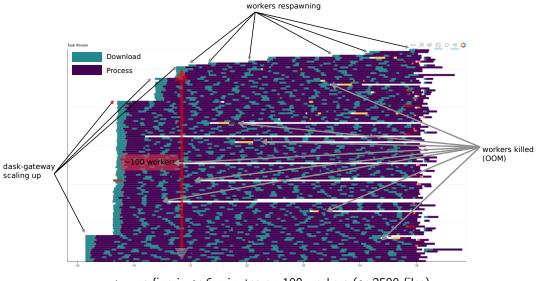
June 9, 2021, ATLAS - Google Technical Meeting

Reminder: Data set and analysis

- 100 TB dataset with ATLAS LHC Run2 data in derived format \rightarrow DAOD_PHYSLITE: small analysis format, calibrations applied
- Distributed across 260k files, 18e9 events in total
- Stored in ROOT format, columns split
 - \rightarrow potential for conversion to parquet
- Example analysis using uproot and awkward array:
 - Apply selection criteria for analysis objects: Electrons, Muons, Jets
 - Perform overlap removal (involves combinatorics)
 - Can then calculate simple observables, fill histograms
 - Reads \approx 10% of the stored data
 - \rightarrow but rather scattered reading: basket (compressed block) sizes in the order of 5-50kb
 - Maximum throughput when reading from memory: 10k events per second (still mostly dominated by decompression/deserialization)

 \rightarrow already ran successfully on google panda queue for 1% and 10% of the dataset

Data access

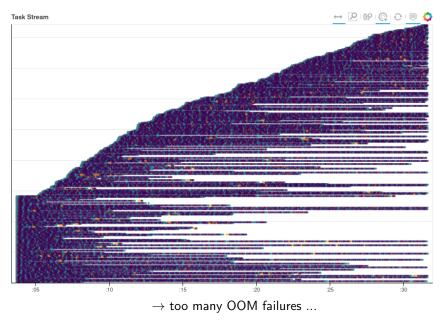

- Use signed urls via rucio query
 - \rightarrow takes a bit of time
 - ightarrow run list_replicas in 10 threads for the 10% dataset (25k files)
 - \rightarrow set signature_lifetime manually
 - (default seems to be 10min for some 1h for others??)
- In jupyter: Upload x509 proxy certificate
- HTTP multirange not supported
- HTTP single range requests work
 - \rightarrow uproot does not do connection pooling by default
 - \rightarrow experimental implementation worked more or less
 - (using 10 concurrent connections and asyncio loops)
 - \rightarrow still slower than whole file download

 \rightarrow use whole file download (download into memory) for now (also used on the panda queue)

Dask setup/configuration


- Using Fernando's dask gateway setup \rightarrow works nicely, workers come up fast
- One dask worker per core, one thread per worker \rightarrow faster than with multiple threads (lot's of python stuff going on) (reconsider, also means less memory per worker)
- 4-5 GB memory per worker (need to be careful with GB and GiB)

1% Test



ightarrow runs fine in pprox 6 minutes on 100 workers (pprox 2500 files)

The "history of particle physics" plot

10% Test

Conclusions and next steps

- Dask gateway setup works well
- Nice bandwidth to google cloud storage \rightarrow no degradation with 100 parallel dask workers
- Need to get memory (leaks?) under control
 → probably mainly related to uproot
- Unfortunately no clue where to start (fixes for all things i found so far are already included) \rightarrow need to dig in further, try to come up with reproducible examples (to show Jim Pivarski)
- Dask does not allow to spawn python subprocesses on workers

 can't do quick & dirty fix by running uproot loading in subprocess
 although come super upbe upploregunds (call method covint) might be
 - \rightarrow although some super ugly workarounds (call python script) might be possible
- Maybe part of the problem are large files (some have up to 1.5GB, few outliers with ≈ 2 GB) \rightarrow try to download to disk instead (do the dask nodes have disks?)
- Maybe try in parallel to run on parquet files

 \rightarrow Can we run a bulk conversion on the panda queue and store output on google cloud?