
PHYSLITE dask tests (on Fernando’s jupyter hub)

Nikolai Hartmann

LMU Munich

June 9, 2021, ATLAS - Google Technical Meeting

1 / 8



Reminder: Data set and analysis

• 100 TB dataset with ATLAS LHC Run2 data in derived format
→ DAOD PHYSLITE: small analysis format, calibrations applied

• Distributed across 260k files, 18e9 events in total

• Stored in ROOT format, columns split
→ potential for conversion to parquet

• Example analysis using uproot and awkward array:
• Apply selection criteria for analysis objects: Electrons, Muons, Jets
• Perform overlap removal (involves combinatorics)
• Can then calculate simple observables, fill histograms
• Reads ≈ 10% of the stored data
→ but rather scattered reading: basket (compressed block) sizes in the order of 5-50kb

• Maximum throughput when reading from memory: 10k events per second
(still mostly dominated by decompression/deserialization)

→ already ran sucessfully on google panda queue for 1% and 10% of the dataset

2 / 8



Data access

• Use signed urls via rucio query
→ takes a bit of time
→ run list_replicas in 10 threads for the 10% dataset (25k files)
→ set signature_lifetime manually
(default seems to be 10min for some 1h for others??)

• In jupyter: Upload x509 proxy certificate

• HTTP multirange not supported

• HTTP single range requests work
→ uproot does not do connection pooling by default
→ experimental implementation worked more or less
(using 10 concurrent connections and asyncio loops)
→ still slower than whole file download

→ use whole file download (download into memory) for now
(also used on the panda queue)

3 / 8



Dask setup/configuration

• Using Fernando’s dask gateway setup
→ works nicely, workers come up fast

• One dask worker per core, one thread per worker
→ faster than with multiple threads (lot’s of python stuff going on)
(reconsider, also means less memory per worker)

• 4-5 GB memory per worker (need to be careful with GB and GiB)

4 / 8



1% Test

dask-gateway
scaling up

workers killed
(OOM)~100 workers

workers respawning

Download

Process

→ runs fine in ≈ 6 minutes on 100 workers (≈ 2500 files)

5 / 8



The “history of particle physics” plot

100 101 102

Dilepton mass [GeV]

103

104

105

106

107

all
after baseline selection

6 / 8



10% Test

→ too many OOM failures ...

7 / 8



Conclusions and next steps

• Dask gateway setup works well

• Nice bandwidth to google cloud storage
→ no degradation with 100 parallel dask workers

• Need to get memory (leaks?) under control
→ probably mainly related to uproot

• Unfortunately no clue where to start (fixes for all things i found so far are already included)
→ need to dig in further, try to come up with reproducible examples
(to show Jim Pivarski)

• Dask does not allow to spawn python subprocesses on workers
→ can’t do quick & dirty fix by running uproot loading in subprocess
→ although some super ugly workarounds (call python script) might be possible

• Maybe part of the problem are large files
(some have up to 1.5GB, few outliers with ≈ 2GB)
→ try to download to disk instead (do the dask nodes have disks?)

• Maybe try in parallel to run on parquet files
→ Can we run a bulk conversion on the panda queue and store output on google cloud?

8 / 8


