

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Detectors

Marco Ferrero on behalf of the CMS ETL GROUP

The 30th International Workshop on Vertex Detectors

Outlook

- > The CMS MIP Timing Detector (MTD)
- The CMS Endcap Timing Layer (ETL)
- ETL Sensors
 - Sensors technology and prototype
 - Laboratory measurements
 - o Beam test results
- The ETL read-out ASIC (ETROC)
 - ETROC0 and 1, specification and beam test results

CMS MIP Timing Detector (MTD)

Barrel Timing Layer (BTL):

- LYSO Crystals + SiPM read-out
- $|\eta| <$ 1.45
- Total surface of $\sim 38~m^2$
- Fluence at 3 ab⁻¹: $2x10^{14} n_{eq}/cm^2$

BTL

Endcap Timing Layer (ETL):

- Low Gain Avalanche Diodes (LGADs) with ASIC readout
- 1.6 < $|\eta|$ < 3.0
- Total surface of $\sim 14~m^2$
- Fluence at 3 ab^{-1} : up to 1.7x10¹⁵n_{eq}/cm²

MTD will improve reconstruction by:

- Combining tracking with timing of charged particles
- Providing a timing resolution of ~ 30 40
 ps at the start of HL-LHC, barrel degrades
 to 50 60 ps at the end of HL-LHC

Marco Ferrero, Università del Piemonte Orientale

ETL

CMS Endcap Timing Layer (ETL)

- ETL will be mounted on the HGCAL nose
- Two double-sided disks for each endcap
 - Large geometrical acceptance (85%/disk)
 - $\circ~$ Ensure two hits for each track
 - \rightarrow Single hit resolution < 50 ps
 - \rightarrow Track resolution < 35 ps
- Coverage:
 - \circ z = 3m from the pp interaction
 - 1.6 < $|\eta|$ < 3.0
 - \circ 0.31 m < Disk Radius < 1.2 m

CMS Endcap Timing Layer - radiation environment

ETL will operate in a large range of radiation fluences ETL must ensure unchanged performances up to the end of lifetime

The fluence will exceed **1x10¹⁵ n_{eq}/cm²** only on a small fraction of the detector surface, after ½ lifetime

CMS Endcap Timing Layer

- 1x10¹⁵ n_{eq}/cm²: turning point in term of performance degradation
 - 88% of ETL < 1x10¹⁵ n_{eq}/cm² → performance degradation not an issue
 - Only 12% > 1x10¹⁵ n_{eq}/cm² → optimization sensor design to achieve unchanged performances also in this region
 Operating temperature below -25°C
- Fill-Factor (ratio between active and total detector area) > 95%
- Low occupancy (< 0.1% at low η, 1% at highest η) to avoid double hits and ambiguous time assignment

Radiation fluence expected in ETL, in red the region > 1x10¹⁵ n_{eq}/cm²

ETL sensors technology

ELT will be instrumented with Low Gain Avalanche Diodes (LGADs) optimized (50µm-thick) for timing measurements

LGAD technology:

- **p**⁺ gain layer implanted underneath n⁺⁺ electrode
 - → High located electric field (E > 300 kV/cm)
 - \rightarrow charge multiplication
 - → Moderate internal gain 10 30 to maximize signal/noise ratio

ETL sensors technology

ELT will be instrumented with Low Gain Avalanche Diodes (LGADs) optimized (50µm-thick) for timing measurements

LGAD technology:

- p⁺ gain layer implanted underneath n⁺⁺ electrode
 - → High located electric field (E > 300 kV/cm)
 - \rightarrow charge multiplication
 - → Moderate internal gain 10 30 to maximize signal/noise ratio
- Sensor Requirements:
 - → Pad size of few mm² determined by occupancy and read-out electronics (pad capacitance \sim 3 4 pF)
 - \rightarrow Gain, leakage current and breakdown voltage uniformity
 - \rightarrow Low leakage current
 - → Provide **large and uniform charge**, > 8 fC when new and > 5 fC at the highest irradiation fluence
 - \rightarrow No-gain distance between adjacent pads < 50 μm
- The final sensor :

16x16 pad array with 1.3x1.3 mm² pads

ETL sensor prototypes

Large size prototypes have been produced by FBK (Italy) and HPK (Japan) R&D activities on ETL sensor design are on going

Latest FBK production:

- Gain layers with different doses and depths of implant
- **Carbon** co-implantation into gain layer to improve the radiation resistance
- 9 inter-pad layouts

Thickness	DEPTH	Dose Pgain	Carbon	Diffusion
45	Standard	0.98	1.*A	CH-BL
45	Standard	0.98	1*A Spray	CH-BL
45	Standard	0.98	0.8*A	CH-BL
45	Standard	0.98	0.4*A	CH-BL
25	Standard	0.94	1.*A	CH-BL
35	Standard	0.94	1.*A	CH-BL
55	Standard	0.98	1.*A	CH-BL
45	deep	0.70	1.*A	CBL
55	deep	0.70	1.*A	CBL
45	deep	0.70	0.6*A	CBL
45	deep	0.70		BL
45	deep	0.74	1*A	CBL
45	deep	0.74	0.6*A	CBL
45	deep	0.74	1.*A	СВН
55	deep	0.74	1.*A	СВН
45	deep	0.74	0.6*A	СВН
45	deep	0.74		BH
45	deep	0.78	Α	СВН
45	deep	0.78	0.6*A	СВН

Latest HPK production:

- 4 gain layer doses
- No carbon co-implantation
- 4 inter-pad layouts

Marco Ferrero, Università del Piemonte Orientale

Laboratory measurements: Probe Station

LGAD sensors are tested on wafer and after dicing with probe station

Two main tests are usually performed:

- Current vs Bias Voltage (IV Curve)
- Capacitance vs Bias Voltage (CV Curve)

These measurements provide information on:

- Leakage current
- Breakdown voltage
- Production uniformity
- Evolution of the gain layer with radiation

Probe station in the Torino Laboratory of Innovative Silicon Sensors

ETL sensors - Laboratory measurements: production uniformity

Latest FBK and HPK LGAD productions are highly uniform and with low leakage current Well within specifications

Laboratory measurements: β -setups

Torino:

- Sr⁹⁰ source
- DUT + trigger in a climatic chamber
- Automated DAQ and analysis system

FNAL:

- In Fermilab SiDet Laboratory
- Sr⁹⁰ source
- MCP used as time reference and trigger
- DUT mounted on a cooling block

ETL sensors - Laboratory measurements: timing resolution

- Laboratory setups in Torino and Fermilab based on a Sr⁹⁰ β -source
- Sensor performances are benchmarked using very fast low noise electronics
- Both FBK and HPK sensors achieve a time resolution < 40 ps up to 2.5x10¹⁵ n_{eq}/cm²
 - → With both the latest FBK and HPK production, ETL able to avoid performance degradation even in its innermost part
 - → Results might change with ELT ASIC. Additional resolution contribution from ASIC, discussed later

ETL sensors - no-gain distance and floating pad resiliency

Too narrow no-gain distance causes early breakdown as the floating pad resiliency get worse

Marco Ferrero, Università del Piemonte

Orientale

ETL sensors - Laboratory measurements: nogain distance

No-gain distance between adjacent pads is performed with Particulars Transient Current Technique setup

		Inter-pad Type	Bias [V]	No-gain distance [µm]	Fill-Factor
FBK	UFSD3.2	T4	230	35	94.6%
	UFSD3.2	Т8	230	40.5	93.9%
	UFSD3.2	T10	200	68	89.8%
нрк	НРК2	IP3	220	64.2	90.4%
	НРК2	IP4	220	91.1	86.5%
	НРК2	IP5	220	101.8	85%
	НРК2	IP7	220	124.4	82.4%

No-Gain area width and corresponding fill-factor from latest FBK and HPK production

Smaller inter-pad allows better fill-factor

→ Study after irradiation needs to be performed

30/9/2021, VERTEX 2021

Marco Ferrero, Università del Piemonte

Orientale

ETL sensors – Beam Test

Fermilab beam test facility:

- 120 GeV/c proton beam
- An independent scintillator provides trigger
- Precise tracking performed with **pixels** and **strips telescope**
- Cold box
- High-speed Photek Micro-Channel Plate provides reference timestamp with 10 ps resolution
 - → Study of a limited number of sensors with high precision

ETL sensors – Beam Test

Two results regarding a 4x4 LGAD array

Time resolution uniformity, $\sigma_{\rm t}\sim$ 40 ps all across the sensor active area

Hit efficiency uniformity $\sim 100\%$

LGAD sensors are highly uniform and efficient, able to achieve the target resolution even on large multi-pad arrays

ETL ASIC – ETROC prototypes

Endcap Timing Layer Read-Out Chip (ETROC) is the ETL read-out ASIC

To achieve **time resolution < 50 ps** per single hit:

- Low noise and fast rise time
- Power budget: 1W/chip, 3mW/channel

Three prototype version before the full-size 16x16 chip:

- ETROCO and ETROC1 produced and tested
 - ✓ **ETROCO**: single analog channel
 - ✓ ETROC1: full front-end with TDC and 4x4 clock tree
- ETROC2 design in progress: full functionality + full size

ETROCO

Goal: measure core front-end analog performance

- Jitter measurements agree with post layout simulation
- Power consumption for preamp and discriminator consistent with expectation
- **31 ps timing resolution** achieved at FNAL test beam with ETROC0+LGAD

Marco Ferrero, Università del Piemonte

Orientale

ETROC1

ETROC1 is the 2nd prototype version: 4x4 pixel + TDC

- ETROC0 front-end
- ETROC TDC: new design optimized for low power
- Low power achieved using simple delay cells with self-calibration
- Measured TDC performance as a 6ps contribution to the resolution

40 MHz noise observed on bump bonded ETROC1 + LGAD

- Coupled through the sensor due to 40MHz clock activity in the circular buffer memory
- The noise can be suppressed by setting the discriminator threshold to ~8 fC

 → under investigation
 - \rightarrow under investigation

ETROC1

ETROC1 beam telescope at FNAL beam facility

From preliminary analysis of the data from ongoing beam test at FNAL, **the total time resolution per hit** for each LGAD+ETROC1 layer has reached:

$$\sigma_i = \sqrt{(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{jk}^2)/2} \sim$$
 42-46 ps

Marco Ferrero, Università del Piemonte Orientale

Summary

- The CMS Endcap Timing Layer will provide time measurements of charged particles with single-hit time resolution < 50 ps, helping the CMS detector to maintain its excellent performances in the very challenging environment of the HL-LHC</p>
- > ETL will be instrumented with Low-Gain Avalanche Diodes (LGADs) and read-out by ETROC ASIC
- The latest LGAD productions have been measured both in the laboratory and during beam tests, to ensure they meet all the specifications:
 - **Highly uniform sensors**: leakage current, gain and breakdown voltage
 - Timing resolution < 40 ps up to $2.5 \times 10^{15} n_{eq}/cm^2$
 - No-gain region width < **120μm** in wider layout
 - Beam test results showed **100% efficiency** and **uniform time resolution** across the whole active area of large LGAD arrays
- **ETROC** is required to consume low power while providing excellent timing performances
 - ETROC1 is the second prototype version: 4x4 pixels + low-power TDC
 40MHz noise observed → can be suppressed by setting discriminator th at 8 fC
 42-46 ps time resolution has been measured during beam test at FNAL
 - **ETROC2** is being designed (submission in 2022)

Backup

Towards HL-LHC

At High Luminosity LHC instantaneous luminosity will increase by a factor ~ 5

- 140-200 proton-proton collisions per bunch crossing
- Difficult in object reconstruction and particle identification due to spatial overlap of tracks

The add of timing information will help to separate overlapping events in space

- Creation of a timing detector providing 4D tracking
- A timing detector with 30-40ps of resolution will reduce the effect of high pile-up

Laboratory measurements: no gain distance

No-gain distance between adjacent pads is performed with Particulars Transient Current Technique setup:

- 1060 nm picosecond laser with \sim 10 μ m spot
- Charge vs laser position fitted with S-curve: convolution of gain layer step function and laser gaussian beam profile
- No-gain distance is defined as the distance between the points at 50% of the two S-curves maximum

Marco Ferrero, Università del Piemonte Orientale

ETL design

