The 30th International Workshop on Vertex Detectors 27–30 Sep 2021 Oxford Europe/London time zone 12:30-13:00 $(JST+8)$

Progress on SOI Pixel Sensors

Toshinobu Miyoshi (KEK)

1

On behalf of SOIPIX collaboration

Table of content

Features of SOI sensors '加速器だから見える世 Process update Application summary

2

SOI sensor

Lapis Semiconductor 0.2um SOI pixel process Monilithic SOI pixel detector Commercial SOI pixel process Low material budget (after thinning) Full depletion (sensor layer < 725um)

•No mechanical bump bonding. Fabricated with semiconductor process only

- Fully depleted (thick / thin) sensing region
	- with low sense node capacitance (~10 fF@17 um pixel) \rightarrow high sensor gain
- SOI-CMOS; Analog and digital circuit can be closer ("active marge") \rightarrow smaller pixel size
- Wide temperature range (1-570K)
- Low single event cross section

Process update

FY2020 MPW run was done FY2021 MPW run is planned (Tape out : 2021 Nov.)

We can choose 3.3V or 1.8V for IO cells

Pinned Depleted Diode (PDD) structure is also available

A wafer for 3D chips is required to scribe a large area around the chips

We can request thinning if required up to 70um (=sensor thickness) and a thinning less than 70 um might be ordered to a different vendor

A back side treatment (such as laser annealing etc.) can be requested

We can select an option for Al sputtering at the back side

(24.6 mm x 30.8 mm)

2020.11 FY20 MPW (MX2254)

Blank areas are also reserved

Pinned Depleted Diode (PDD) Structure

Shizuoka Univ.

Optimization of PDD structure

A. Takeda, M. Yukumoto (Univ. of Miyazaki)

Doping condition is optimized in the pixel region

On-going project

Use existing sensors

Application

1. neutron experiment

2. Electron micrography

3. Muon beam monitor

Fabricate new chips (FY2020-)

4 High-energy physics experiment (DuTiP)

5. X-ray astronomy (XRPIX)

6. Photon-counting CT/PET (SOI-SiPM)

7. Electron Track (ET) Compton Camera (SOI E-Track)

Univ. of Tokyo

Application for Neutron measurement

Measure gravitational/inertial mass ratio of neutron to test the weak equivalence principle in the quantum regime

Y. Kamiya et al., Physics of fundamental Symmetries and Interactions – PSI2016, Switzerland, Oct. 16 -20 (2016)

Time-resolving imaging detector

- Evaluate the length scale of gravitationally bound neutron states by measuring the special distribution **G. Ichikawa, S. Komamiya, Y. Kamiya et al.**, PRL 112, 071101 (2014)
- Evaluate the energy scale of the bound states by measuring the oscillation frequency

Requirement of pixel sensor: Small pixel size : < a few tens of um Frame rate $<$ 5ms

SOIPIXs (INTPIX/XRPIX) are the promising candidates

Development of ¹⁰B-INTPIX4

INTPIX4

- $+$ 512 x 832 pixels (17 μ m-square / 10.2 x 15.4 mm²)
- Thickness \sim 300 μ m
- Readout speed: 280 nsec / pixel (measured)
- $+$ Gain 13.1 μ V/e⁻

(S. Mitsui, Y. Arai, T. Miyoshi, and A. Takeda, NIMA 953, 163106 (2019))

Formation of 10B layer

Argon RF sputtering

Nanotechnology platform @ univ. of Tokyo

Shibaura CFS-4EP

+ 400(100) W RF Power for Ti/B (pre-sputtering) + Sputtering rate for Ti(B): \sim 1.5(0.3)/10 [nm/sec]

sputtering machine in the clean room (class 100)

Y. Kamiya, T. Miyoshi, H. Iwase et al., NIMA979, 164400 (2020)

Univ. of Tokyo **Neutron irradiation tests**

Y. Kamiya, T. Miyoshi, H. Iwase et al., NIMA979, 164400 (2020)

Measurement was done at STNL in 2019 Find clusters in 7x7 pixels Neutron events can be distinguished

FY2020- 10B-XRPIX7: Zhang Lan(Univ. of Tokyo) FY2021- 10B-INTPIX4NA

Application to electron micrography

T. Ishida (Nagoya Univ.)

Start collaboration between KEK and Nagoya Univ. in 2018 Goals:

Time-resolved transmission electron microscopy (TR-TEM) with sub-us order Demonstration with INTPIX4 SOI sensors Feasibility study in Low Voltage(LV) TEM

30-kV spin-polarized transmission electron microscope with GaAs-GaAsP strained superlattice photocathode

*Kuwahara et. al., APL (2012)

INTPIX4

Pixel size 17um x 17um, 512x832 Sensor thickness 500um Back bias ~280V (full depletion)

**Mitsui et. al., NIM (2020)

DAQ board(SEABAS2) 12-bit ADC output, frame rate 10 fps (Max. 100 fps)

***Nishimura et. al., NIM (2016)

"Performance of a silicon-on-insulator direct electron detector in a low-voltage transmission electron microscope", Takafumi Ishida, Akira Shinozaki, Makoto Kuwahara, Toshinobu Miyoshi, Koh Saitoh, Yasuo Arai, Microscopy, Volume 70, Issue 3, June 2021, Pages 321–325

FY2021 evaluation of SOI sensor in TR-TEM FY2022 development of large area SOI sensor for further evaluation

<https://g-2.kek.jp/portal/> **Muon g-2/EDM experiment at J-PARC**

Goal

Anomalous magnetic moment 0.1 ppm Electric dipole moment (EDM) 10^-21 e.cm

Muon beam monitor:

Initially proposed method MPC-Phosphor-CCD combination

"A new approach for measuring the muon anomalous magnetic moment and electric dipole moment", M Abe, et al., Prog. of Theo. and Exp. Phys., Volume 2019, Issue 5, May 2019, 053C02

Muon LINAC: 3 stages Beam monitor at the exit of 3 stages: 4.5 MeV, 40 MeV, 212 MeV Different energy deposit in each energy

SOI pixel sensor is proposed

as a beam monitor:

INTPIX8 pixel size 16 um x 16 um, 1024 x 640

Application to muon beam monitor

(OK) Required area 10 x 10 mm² (OK) special resolution > 0.1 mm (OK) readout time 25 Hz (OK) expodure time > 10 ns (?) Dynamic range : a few to $10⁴$ muons Muon beam test at J-PARC (Mar. 2020)

- Muon detection - Detection in partial depletion - Dynamic range test

14 Analysis is ongoing; next \rightarrow Construct a vacuum chamber for the sensor to accelerator tube test

Integration time 200ns

On-going project

Use existing sensors

Application

1. neutron experiment

2. Electron micrography

3. Muon beam monitor

Fabricate new chips (FY2020-)

4 High-energy physics experiment (DuTiP)

5. X-ray astronomy (XRPIX)

6. Photon-counting CT/PET (SOI-SiPM)

7. Electron Track (ET) Compton Camera (SOI E-Track)

DuTiP for Belle II upgrade Also refer to Nakamura-san's talk (Sep. 28)

Dual Timer Pixel concept

Binary detector / 45 um x 45 um pixel size / 50um thickness / Two 7-bit timers to hold signals and wait for trigger / 15.9 MHz clock (63ns) synchronized with SuperKEKB clock 7-layer vertex detector replacing PXD+SVD

PDD structure is applied

FY2020 DuTiP1 (basic component and pixel matrix) was developed and testing FY2021 DuTiP2 (full function, row direction) will be submitted

To complete a census of black holes across cosmic time and mass scale

Buried Super-massive black holes. \sim 10⁴ Msun)

Other applications: $MeV-\gamma$ Axion search Neutron

XRPIX:Pixel and Peropheral Circuits (since ver. 5)

K. Shimazoe

Development of SOI SiPM

The Univ. of Tokyo, Bioengineering Department, Takahashi Laboratory

Application : photon-counting CT or PET

- Chip size: 2.9 mm x 2.9 mm Version 1
	- 6 microcell Quench R: $100kΩ & 200kΩ$
		- Reduce cathode and guard ring
	- Cell size: $28 \sim 30$ µm

Chip layout

Packaged chip

Version 2 (version 1 was modified)

Chip size: 4.45×4.45 mm² **Pixel Dimension**

- 1.0×1.0 mm² TEGs: 6
- 0.5×0.5 mm² TEGs: 11

Design Variable

- Size of microcell
- Size of cathode
- Thickness of guard ring
- Shape of anode

70μ m thinning for back illumination

Evaluation test is underway

K. Shimazoe **Evaluation test in SOI-SiPM ver. 1** Time resolution

All output (64 cells) γ^2 / ndf PDE(photon detection efficiency) 5.735e+04/17 Photon spectrum Prob Constant 1724 ± 35.05 1800 Mean $2.799 - 08 + 2.3429 - 13$ 450 Sigma $9.959e-12 \pm 2.33e-13$ $-TEG1-1$ Avalanche starts around 50V 1 p.e. Input: 1600 60 $-$ TEG1-2 1400 400 520nm laser pulse $-TEG1-3$ 1200 2 p.e. --* TEG2-1 350 50 FWHM=22.7 ps 1000 Relative PDE [%]
8
8 *---TEG2-2 800 300 \cdot TEG2-3 600 **Pedestal** 3 p.e. $\frac{250}{200}$ 400 **solid:100 kΩ** 200 **dot:200 kΩ** 200 averade of 27.8 27.7 27.9 4 p.e. detected photon 150 SPTR * (1 cell) $^* \mu = -\ln \frac{N_{ped}}{N}$ 100 χ^2 / ndf $3196/62$ 20 5 p.e. Prob N_{total} 200 Constant 148 ± 3.702 50 28.34 ± 0.002926 180 Mean $=$ μ_{photon} $0.1046 + 0.003206$ Sigma 160 F 10 Ω μ_{dark} 140 F 10 20 30 40 50 60 70 $\mathbf 0$ 80 Amplitude [mV] 120F FWHM=246.3 ps 0.5 1.5 $\overline{2}$ 2.5 3 3.5 OverVoltage [V] **Average PDE [%] ND** area **detected** $[mm^2]$ **filter photon [%]** 26.5 $\overline{27}$ 27.5 28 28.5 29 29.5 30 30.5 **KETEK*** 32.5 4.0 3×3 **17 %** coincidence event between trigger and SiPM **SOI-SiPM** 39.6 1.4 0.24×0.24 **8.1 %** Time spectrum $=$ t_SiPM – t_trig

SOI based electron tracking Compton-PET scanner

Compton-PET hybrid camera

511 keV and 245 keV

SOI based "electron tracking" Compton imaging system for medical imaging (Compton-PET)

Electron-tracking (ET) Compton Camera

• Conventional Compton imaging **limits the quantitative imaging**. In order to fully reconstruct the Compton images, the **electron-tracking Compton imaging** method has been investigated to estimate the incident directions of gamma rays

A method for the full reconstruction of Compton images by measuring **the direction and energy** of the **recoil electrons**.

- With the **direction and energy of the recoil electrons**, we can calculate the angle of incident gamma ray photon
- Then we can obtain the direction of incident gamma-ray since the incident gamma-ray, the scattered photon and the recoil electron must be on the same plane.

Fig.2 Schematic of (a) Conventional Compton imaging and (b) Electron-tracking Compton imaging

K. Shimazoe U of Tokyo

E.T. Compton Camera(Previous study)

Image reconstruction without Electron Tracking

Image reconstruction with Electron Tracking [2][3]

[2]Shimazoe, K., et a.. "Electron Pattern Recognition using trigger mode SOI pixel sensor for Advanced Compton Imaging." Journal of Instrumentation 11, no. 02 (2016): C02030.

[3]Yoshihara, Y., Shimazoe, et al, Y. (2017). Development of electron-tracking Compton imaging system with 30-μm SOI pixel sensor. Journal of Instrumentation, 12(01), C01045. * A.R. = Angular Resolution

Summary

高工ネルギー加速 We have developed SOI pixel sensors for 16 years. MPW run was held in FY2020. MPW run is also planned in FY2021.

New structure, PDD, can be used in recent MPW runs

Existing sensors were applied for various applications: Neutron (INTPIX, XRPIX) Electron micrography (INTPIX) Muon beam monitor (INTPIX)

25/25

In recent MPW runs, sensors for several application were developed High energy physics (DuTiP) X-ray astronomy (XRPIX) Photon counting CT/PET (SOI-SiPM) ET Compton Camera (SOI-E-track)

