

PROGRESS IN DMAPS MONOPIX

J. DINGFELDER (U. BONN) AND THE LF-/TJ-MONOPIX DESIGN AND MEASUREMENT TEAMS FROM BONN, CERN, CPPM, CEA-IRFU

VERTEX 2021 SEPTEMBER 29, 2021

- Optimized dedicated sensor
 → high radiation tolerance
- Labor and cost intensive bump-bonding

- Reduced material budget
- Lower module cost
- Larger wafers, throughput
- Fast turn-around time

X

 The sensor volume is not fully depleted: Limited radiation tolerance

- CMOS processes offering high resistivity substrate (HR)
- High voltage biasing (HV)
- $d \sim \sqrt{\rho \cdot V}$

V

- Strong drift field
- Enhanced charge collection & radiation tolerance
- Faster charge collection

UNIVERSITÄT BONN LARGE VS. SMALL COLLECTION ELECTRODE

Electronics inside charge collection well

- Large collection electrode
 - short drift distances
 - few regions with low E field ⊢ radiation-hard
 - o less trapping
- Large sensor capacitance
 - o compromises noise and speed/power
 - \circ risk of cross-talk (digital \rightarrow sensor)

Electronics outside charge collection well

- Small collection electrode
 - o longer drift distances
 - o potentially regions with low E field
 - \Rightarrow requires **modified process** for

radiaton hardness

- Small sensor capacitance (< 5 fF)
 - lower analog power budget (noise, speed)
 - o less prone to cross-talk

UNIVERSITÄT BONN PROCESS MODIFICATION: TOWER JAZZ 180 NM CMOS

Standard process

- ALICE ITS type
- **High-resistivity** p-type epi (> 1 k Ω cm) \Rightarrow thickness typ. 25 μ m
- Quadruple well
 doop p well shields p well.
 - \Rightarrow deep p-well shields n-well \Rightarrow **full CMOS**
- Reverse bias typ. 6V
 - \Rightarrow enhanced, but not full depletion
 - \Rightarrow some charge collected only by diffusion \Rightarrow slow

Modified process

- Additional planar, low-dose N implant
 - \Rightarrow depletion from two junction boundaries
 - \Rightarrow full volume can be depleted
 - \Rightarrow improved lateral charge collection
- Maintain small capacitance
- No significant circuit/layout changes

W. Snoeys et al. DOI: 10.1016/j.nima.2017.07.046

UNIVERSITÄT BONN TWO DEVELOPMENT LINES

- Derived from ATLAS FE-I3 readout chip
- Sufficient rate capability (~100 MHz/cm²) with affordable in-pixel logic density for CMOS pixels

LFOUNDRY MONOPIX

LF-Monopix 1 (2017)

LF-Monopix 2 (2021)

- Large electrode
- Resistivity > 2 kΩ cm
- Backside processing
- Voltages up to 350 V

LF-MONOPIX 1: IRRADIATION – BREAKDOWN & DEPLETION

Breakdown voltage > 200 V Increase in leakage current due to NIEL+TID damage after irradiation

UNIVERSITÄT BONN

Depletion in LF-Monopix1 after NIEL damage (100 μm)

Full depletion voltage (for 100 μ m): unirradiated: ~ 10 V

irradiated: ~150 V

Guard-ring structure essential for high breakdown voltage (up to \sim 300 V)

• 15 steps up to 100 MRad

TID dose [Mrad]

- **Hit efficiency:** Unirradiated : 99.6%
 - \circ 10¹⁵ n_{eq}/cm² : 99.4%

(100 μm, Th: 1885±227 e⁻, Bias: 60 V)

(100 μm, Th: 2336±262 e⁻, Bias: 150 V)

• With timing (DESY test beam):

- Smaller pixel pitch: $50 \times 150 \ \mu m^2$ • Reduced C_D (400 fF \rightarrow 250-300 fF) • Larger array: 340 × 56 pixels
- Power: ~ 30 μ W/pixel

Column-drain readout in **2 cm long column**, with full in-pixel electronics **Radiation-hard** Optimized FE for best timing and performance after NIEL and TID irradiation Improved pixel layout for further cross-coupling mitigation

Correct readout operation and data output

Linear CSA response

UNIVERSITÄT BONN LF-MONOPIX 2: BREAKDOWN MEASUREMENT

Increased breakdown voltage from LF-Monopix 1 (280 V) to LF-Monopix 2 (> 320 V)

UNIVERSITÄT BONN LF-MONOPIX 2: CROSS-COUPLING MITIGATION

Observation in **LF-Monopix 1**: Small **cross-coupling signal** coincident with switching of READ inR/O

Inj. Pix:[24,32] Mon. Pix: [24,70] Amplitude [V] Injection 0.5 Amplitude [V] AmpOut 0.01 0.00 -0.01 Amplitude [V] Hit_Or 1.0 Token ы 16 0.5 0.0 1.0 Read ы Бо 0.0 1.0 Freeze .5 g 0.0 -2 $^{-1}$ 0 Time[us]

LF-Monopix 2 with improved pixel layout:

No sign of cross-coupling coincident with R/O digital switching while carrying signals from pixels across column

	$\tilde{\mathbf{U}} \leftarrow 0.5 \text{V Inj}$					10 mV			
	, v	-inp. 7.	JHIV)					Noise	
			-	- -	+] peak-to	
	1		-		I			peak	
								~8 mV	
INJ									
HITOR									
TOKEN									
FREEZE									
READ									
DATAOUT									

UNIVERSITÄT BONN LF-MONOPIX 2: FRONT-END PERFORMANCE

Preliminary results with untuned FE, calibrated using same C_{inj} as for LF-Monopix 1

	LF-Monopix 1	LF-Monopix 2 Expected	LF-Monopix 2 Measured	
Chip size	1 × 1 cm ²	2 × 1	. cm²	
Pixel size	$50 imes 250\ \mu m^2$	50 × 1	50 μ m ²	
Noise	150-200 e	100-150 e	112 e	
Threshold disp.	~ 100 e	80 e	untuned	
Min. threshold	~ 1500 e	1000 e	~ 1000 e (TBC)	
In-time threshold	~ 2000 e	1500 e	to be measured	
Efficiency	97% (irrad., in-time)	> 97% (irrad., in-time)	to be measured	

ery preliminary (1st meas.)

Derived from ALICE development (led by CERN)

TJ-Monopix 1 (2018)

TJ-Monopix 2 (2021)

- Small electrode
- Small capacitance ⇒ **low power and noise**
- High-resistivity epi layer: 1-8 kΩ cm (epi thickness: 18-40 µm)
- Modified process to improve lateral depletion

UNIVERSITÄT BONN TJ-MONOPIX 1: THRESHOLD AND NOISE

- Good noise performance: 16 e (unirrad.) \rightarrow 23 e (10¹⁵ n_{eq}/cm²)
- Threshold dispersion:
 33 e (unirrad.) → 66 e (10¹⁵ n_{eq}/cm²)

Need better noise and threshold tuning

I. Caicedo et al., DOI: 10.1088/1748-0221/14/06/C06006

UNIVERSITÄT BONN

- Efficiency of TJ-Monopix 1 after irradiation to $10^{15} n_{eq}/cm^2$ found to be only $\sim 70\%$
- Options for improvements: 1. Lateral field enhancement → n-gap or extra deep p-well
 - 2. Higher input signal → thick Czochralski (Cz) substrate

30 µm epitaxial layer with "n-gap"

 Increase of efficiency after irradiation to 10¹⁵ n_{eq}/cm²: 87.1%

• Almost fully efficient after irradiation to $10^{15} n_{eq}/cm^2$: **98.6%**

 \rightarrow see also talk on MALTA by Carlos Solans

Measured by C. Bespin in 5

Ge

2

electron

beam

at

DESY

19

• Full-scale chip: 2 × 2 cm²

- Smaller pixel pitch: $33 \times 33 \ \mu m^2$
- 512 × 512 pixels
- Power: ~ 1 μ W/pixel

Submitted: Q4/2020, Received: Q1/2021

Larger signal (e.g. Cz silicon) or lower threshold

More efficient charge collection (n-gap, extra dpw)

- Modified sensor geometry
- Optimum (smaller) cell size for given electronics

Improved $FE \Rightarrow$ lower noise & threshold

- Gain increased
- RTS noise reduced
- Less threshold dispersion
- Threshold trimming

Lab measurement with Fe55 source

Occupancy

(two FE flavors activated, right one

Charge spectrum

Chip works and detects radiation

UNIVERSITÄT BONN TJ-MONOPIX 2: FIRST MEASUREMENTS

22

	TJ-Monopix 1	TJ-Monopix 2 Expectated	TJ-Monopix 2 Measured
Chip size	$1 \times 2 \text{ cm}^2$	2 × 2	cm ²
Pixel size	$36 imes 40 \ \mu m^2$	33 × 3	$3 \mu \mathrm{m}^2$
Noise	~ 20 e	< 10 e	17 e
Threshold disp.	~ 30 e	< 20 e	5 e
Min. threshold	~ 300 e	< 150 e	~ 150 e
In-time threshold	~ 400 e	250-300 e	to be measured
Efficiency	\sim 70% (irrad.)	> 95% (irrad.)	to be measured

Very preliminary (1st meas., settings not optimized) UNIVERSITÄT BONN USE CASE: BELLE II VERTEX DETECTOR UPGRADE

VTX = 5-layer pixel detector with CMOS sensors

- Layers 1-2 : Self-supporting all-silicon ladders, air-cooled Layers 3-5: Carbon-fiber support-frame, ALICE-like staves, water-cooled
- Low material budget (sensor thickness \sim 50 μ m): 0.1 X₀ (L1+2), 0.3 X₀ (L3+4), 0.8 X₀ (L5)
- Chip size = 2 × 3 cm², same chips in all layers

Sensor	TJMonopix-2	LFMonopix-2	Belle II
Techno	TJ-180 nm	LF-150 nm	
Pixel pitch (µm²)	33x33	150x50	30 to 40
#Columns x #Rows	512x512	56x340	
Sensitive area (cm ²)	16.9x16.9	8.4x17	~30x20
Time Stamp (ns)	25	25	O(100)
Trigger latency (μs)	Global shutter	Continuous	5 ightarrow 10
Output charge (bits)	7	6	
Bandwidth (Mbits/s)	320		O(320)
Power (mW/cm ²)	O(200)		≤200
Hit rate (Mhz/cm ²)	>100	>100	≤150
TID kGy	1000		1000
Fluence (x 10 ¹³ n _{eq} .cm ⁻²)	100	100	10

TJ-Monopix2 chosen as "workhorse" for development of new pixel sensor:

OBELIX

 \rightarrow see talk by Katsuro Nakamura

- Next-generation Monopix 2 chips arrived in early 2021 and are currently being intensively tested and characterized.
- LF-Monopix 2 and TJ-Monopix 2 are both functioning and (so far) show the wanted improvements.
- Fully monolithic column-drain readout works well.
- Large-electrode design (LFoundry):
 - High breakdown voltage
 - Large signal
 - High efficiency after irradiation
- Small-electrode design (TowerJazz):
 - Low capacitance, low noise
 - Low power
 - Can be made radiation-hard

Research and Technology Center Detector Physics

started operation in August 2021

• TJ-Monopix 2 workhorse for Belle II VTX upgrade ⇒ OBELIX chip

• Many thanks to Christian Bespin (Bonn) und Ivan Caicedo (Bonn) for the latest TJ-/LF-Monopix 2 measurements and help with the preparation of this talk.

• The measurements leading to these results have partially been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)".

Test beam setup and data acquisition at DESY

Telescope setup:

- 1 LF-Monopix1 DUT (200/100 um thickness),
- 5 MIMOSA26 tracking planes
- 1 FE-I4 timing reference plane.
- Triggered by a plastic scintillator through a TLU.

Beam: 5 GeV e- at DESY TB21

Scintillator, TLU and DUT (Token) timestamps sampled with a **640 MHz** clock in the MIO3 FPGA.

TB data analysis carried out using: https://github.com/SiLab-Bonn/beam_telescope_analysis

Residuals

From I. Caicedo (Bonn)

Cluster size

30

Figure 28: Guardring design of LF-Monopix2. Red is nwell and blue is pwell. The dark green ring surrounding the matrix and periphery is a combination of nwell, niso vd dnwell.

UNIVERSITÄT BONN TJ-MONOPIX 1: ENC - RELATIVE AND ABSOLUTE

• Relative ENC increase: NMOS (25%) > CMOS (15%)

• Nominal ENC: CMOS > NMOS

N P

Source Follower