

THE PHASE-2 UPGRADE OF THE CMS INNER TRACKER

Rachel Bartek On behalf of the CMS Experiment

THE CATHOLIC UNIVERSITY of AMERICA

Motivation

- Change in running conditions for LHC to HL-LHC
- Pileup increasing from 25 to ~200
- Hit rate from 0.58 to 3.2 GHz/cm²
- Radiation from 300 to 3000 fb⁻¹
- The above places the following requirements on the inner tracking detector
- Smaller pixels to reduce occupancy
- Lower detection threshold to allow two track separation
- Reduced material budget to improve tracking performance

2

HL-LHC CMS Tracker

R. Bartek

Detector Layout

- 4 large discs on each side (TEPX)
- Each disc made of 4 identical dees
- 8 small discs on each side (TFPX)
- 4 barrel layers (TBPX)
- No crack at z=0

- Two ladders per layer skewed in rφ for the insertion of CMS
- Two types of pixel modules: 1x2 and 2x2 readout chips per module
- Extended coverage up to $|\eta| = 4$
- Innermost modules located at r = 2.75 cm form the beamline

the two types of modules described in the text.

reating from the lumin our reasing less been about in Fig. 2.4 hoth for the Power cables

Inner Tracker Sensors

- Decision Q4 2021
- Intense R&D program
- Baseline option:

- n-in-p planar, 150 µm active thickness (~1.7kg silicon), 25x100 µm²
 cell size
- Bitten implant, no punch-through bias dot
- Hit efficiency > 99% after ~2.0e16 n_{eq}/cm^2
- Alternatives being studied:
- 3D pixels for TBPX layer 1 and TFPX ring 1
 - Better power consumption
 - Negligible degradation in hit resolution after 1.0e16 n_{eq}/cm^2
- 50x50 µm² still considered for disks
- Planar sensors with bricked layout in the central η region
 R. Bartek

6

- ASIC is based on CMOS 65nm technology within the CERN RD53 project
- Radiation tolerant up to 1 Grad (verified at high dose rate)
- Robust against SEU effects
- Bonding pad reticles fit both 50x50 and $25x100 \ \mu m^2$ sensor options
- Low power consumption < 1 W/cm² at max trigger rate (CMS Level1: 750 kHz)
- Serial powering via on-chip shunt-LDO regulators (1 for analog, 1 for digital sections) to supply the needed 50 kW with a limited mass of the power cables
- CMS version of RD53 ROC (C-ROC) wafers back at CERN
- Will be tested and green chips flip chipped
- Full size ASIC: 432x336 channels
- Analog FE linear architecture featuring an in-time threshold O(1000e)
- 4 bit digital readout with selectable 6-to-4-bit dual slope ToT mapping for charge compression (elongated clusters, heavy ionizing particles)

R. Bartek

ementation of the readout architecture. In total, the pixel detector will have an active sur-

HDI

- Flexible PCB containing only passive components
- High precision resistors and decoupling capacitors
- HDI contains return path for supply current
- Careful design for current paths to preserve low material budget
- HV capable of up to 1000 V

ementation of the readout architecture. In total, the pixel detector will have an active sur-

- Modules grouped in 500 serial power chains, up to 12 modules in a chain
 - Modules powered in series, chips within each module powered in parallel
 - A shunt-LDO (SLDO) on each chip provides voltage regulation for each chip while maintaining a constant current
- Chips in a module in parallel (4A for 1x2 modules, 8A for 2x2 modules)
- Sensor bias following the serial power chains with single return line
- Single power supply module: current source (SP), HV for sensor (0-800V), LV for portcards and pre-heaters required by CO₂ cooling
- Only copper cladded aluminum wires in the detector volume

Readout Architecture

- Custom ASICs, LpGBT, VTRX+
- Up to 6 electrical up-links at 1.28 Gb/s per module to LpGBT
- Data formatting to reduce data rates by half
- One electrical down-link at 160 Mb/s per module from LpGBT
- Clock, trigger, commands, configuration data to modules
- 28 Data Trigger Control boards required for inner tracker
- Portcards optoelectronic service card
- 2x LpGBTs and VTRx+ links, powered via cascaded DC-DC converters

Mechanical Support

- Light Carbon Fiber structures with embedded cooling pipes
- Disks with flat geometry (unlike turbine in current detector)
- Improved fiber routing which reduces radiation induced attenuation
- Cooling based on evaporative CO₂ (T=-35°C) distributed in 1.8 mm outer diameter stainless steel pipes (168 cooling loops)

Dee composed of symmetric sandwich:

- Central layer CO₂ pipe and Airex foam
- Thermal Pyrolytic Graphite
- Electrical Isolation: Aluminum Nitride
- Dee-PCB with electrical services
- CFK panel and modules

Glass heaters to mimic module thermal needs to verify simulation

Summary

- It is extremely challenging to design an inner tracking detector that can fully exploit the high instantaneous and integrated luminosity expected from the HL-LHC
- Prototyping phase is still on-going
- Several RD53A modules made to test sensor options
- Digital modules made and being tested
- Sensor technology decision expected soon
- Construction will not mark the end of R&D efforts for the inner tracker as part will be replaced halfway through HL-LHC run
- The CMS HL-LHC upgrade is ambitious, by necessity, but major progress has been made