

Upgrade of the Belle II Vertex Detector

Katsuro Nakamura on behalf of the Belle II VXD upgrade collaboration Sep 28, 2021 The 30th International Workshop on Vertex Detectors (VERTEX2021)

1

9/28/2021

Vertex Detector at Belle II Experiment

- Belle II experiment at SuperKEKB collider
 - Luminosity-frontier experiment, exploring new physics beyond the standard model
 - Asymmetric e^+ - e^- collisions at $\sqrt{s} = 10.58$ GeV
 - Target integrated luminosity: 50 ab⁻¹
 - Target instantaneous luminosity: L ~ 6 x 10^{35} cm⁻²s⁻¹
- Vertex detector (VXD) in Belle II
 - 2 layers of PiXel Detector (PXD): DEPFET sensor
 - 4 layers of Silicon Vertex Detector (SVD): Double-sided silicon strip (DSSD) sensor

Roles of VXD

- Determine the vertex position
- Standalone tracking
- PID using SVD dE/dx for low p_T tracks
- Central Drift Chamber (CDC): Outer tracking detector in Belle II
 - Radial coverage: 168mm<R<1111mm

Current VXD

Pixel Detector (PXD): DEPFET sensor

- **Radius:** 14mm (L1), 22mm (L2)
- Sensor thickness: 75µm
- Material budget: 0.2%X₀ per layer
- Pixel size: 50µm x 55-85µm
- Long integration time: 20µs
 - Hit occupancy reduction by Region-of-Interest (Rol) selection using SVD tracks

PXD talk by B. Wang (Sep 27)

Silicon Vertex Detector (SVD): DSSD sensor

- Radius: 39mm(L3), 80mm(L4), 115mm(L5), 140mm(L6)
- Sensor thickness: 300-320µm
- Material budget: 0.7%X₀ per layer
- Readout strip pitch (P/N): 50µm/160µm (L3), 50-75µm/240µm(L4-6)
- Hit time resolution (P/N): ~2.9ns/2.4ns

SVD talk by Y. Uematsu (Sep 27) + Cluster position resolution by R. Leboucher, Simulation by M. Kaleta (YSF)

VXD Operation in Belle II

Successful VXD operation at present Improved vertexing performance under continuous beam injections confirmed by D lifetime measurement to keep constant beam currents Resulting time resolution in Belle II is max.25Hz injection to each beam better than Belle/BaBar by factor about 2 10µs revolution time **SuperKEKB** arXiv:2108.03216 ~3km circumference) Belle T 10^{3} 2 bunches **Belle II** Every injection induces per injection (100ns spacing) beam BG on detector. Belle $D^0 \to K\pi$ \rightarrow short integration time or gated-mode operation required Recorded Weekly BABAR [otal integrated Weekly luminosity [fb⁻¹] $\int \mathcal{L}_{Recorded} dt = 213.49 \, [\text{fb}^{-1}]$ 2021 10 150 2020 So far, 2019 213 fb-1 accumulated Recorded peak luminosity: D^0 decay time [10⁻¹² s] 50 t [ps] 3.12x10³⁴ cm⁻²s⁻¹ 2 World's most precise D lifetime measurements time VERTEX2021 9/28/2021

Limits on current VXD

Tolerance for beam-induced background (BG)

- SVD limit will be relaxed by hit-time BG rejection ③
- Difficulty of accurate prediction for injection BG and collimator condition at design luminosity ☺
- Drastic change in beam optics for design luminosity \rightarrow large uncertainty \otimes ($\beta_y^* = 1.0$ mm $\rightarrow 0.3$ mm) No big margin...

Tracking and vertexing performance

- Tracking performance in low-pt limited by material budget
- Room to improve vertex resolution with better hit position resolution
- Improvement in $K_{\rm S}$ vertexing desirable

Latency of Level-1 trigger

 Belle II trigger latency is limited to 5.0µs by SVD (depth of APV25 ring-buffer)

So in summary,

- Predicted BG within limits, BUT without enough safety margin
- Also performance improvement highly desirable

Timescale of the VXD upgrade project

2nd long shutdown for SuperKEKB intermediate upgrade

- Timeframe expected to be 2026-2027, but still with uncertainty
 - Detailed SuperKEKB upgrade plans are under discussion with the international taskforce teams.
- Opportunity for large upgrades of Belle II subdetectors
- Preparation to be done in several years
 → Currently available technologies preferable

Target of on-going VXD upgrade project

SuperKEKB/Belle II operation projection

Requirements for the VXD upgrade

Requirements

Radius range: R	14 – 135 mm ^(**)	
Tracking & Vertexing performance at least as good as current VXD		
Single point resolution ^(*)	< 15 um	
Total material budget	< (2x 0.2% + 4x 0.7%) X ₀	
Robustness against radiation environment current extrapolation with safety factor x5		
Hit rate ^(*)	~ 120 MHz/cm ²	
Total Ionizing Dose ^(*)	~ 10 Mrad/year	
NIEL fluence ^(*)	$\sim 5.0 \times 10^{13} \text{ n}_{eq}/\text{cm}^2/\text{year}$	

(*) requirement for the innermost layer (R=14mm)

(**) Optionally, we may include also the CDC inner region (135<R<240mm)

Required hit rate tolerance vs. Radius

Possible other improvements by upgrade

- Impact parameter resolution
- Tracking performance for low- p_{T} tracks
- Longer trigger latency
- Capability of Level-1 trigger creation

Strategy of upgrade R&D

Several technology options under investigation by R&D subgroups

- R&D activities will access the options
 - Which concepts bring best performance?
 - Which technology fit requirements?
 - Which technology fit timeframe of installation?
- $\scriptstyle \bullet$ CDR to be prepared within ${\sim}1$ year w/ full-scale prototype test and physics benchmarking
 - and then TDR (w/ full technical description) as well

R&D subgroup (1): Thin DSSD sensor

Thin/fine-pitch SVD (TFP-SVD) concept

Targets

- Outer layers
- Handle higher hit-rate
 - O(1MHz/cm²) R>4cm
- Improve tracking/K_s
 vertexing performance

Thin DSSD sensor

- Thinner sensor: 140um
- Produced by Micron

Finer N-side strip pitches than SVD: ~85um

 \rightarrow R&D challenges in front-end

- Noise (smaller signal)
- Heat dissipation (larger # of channels)

Ohmic strips

Junction strips

TFP-SVD DSSD layout

Dedicated front-end ASIC (SNAP128A)

- 180nm CMOS process by Silterra
- Short signal pulse width: ~55ns (simulation)
- Better noise characteristic and less power consumption than SVD
 - simulated noise:

 $\sim 640e^{-}$ @ C_{det}=12pF

- Binary hit readout
 - to reduce cables

R&D subgroup (1): Thin DSSD sensor

Sensor dimension

Sensor thickness

P-side strip pitch

P-side strip width

P-side # of strips

N-side strip pitch

N-side strip width

N-side # of strips

P-side floating string

Active area

DSSD 1st prototype

- Three protptype sensors delivered
 Basic characterization in Micron
 - Reasonable I-V and C-V results
 - Thickness: 148±5um
 - Full depletion voltage: 14±1 V

N-side floating string no floating strip 3.0 1-V curve result 2.5 2.0 1.5 1.0 0.5 0 5 10 15 20 25 30 35 40 45 50 bias voltage [V]

Specification of prototype ver.1

Junction (P-side) strip

Ohmic (N-side) strip

52.6 mm x 59.0 mm (rectangle)

51.2 mm x 57.6 mm

 $140 \text{ um} \pm 10 \text{ um}$

50 um

14 um

1024

no floating strip

75 um

14 um

768

SNAP128A: 1st prototype

 All necessary functions both analog and digital integrated

- Being tested in KEK
 - Amp/shaping part and digital part working
 - Reasonable power
 consumption: 329mW

SNAP128A test board

 To be assembled with DSSD to evaluate detector performance in early 2022

R&D subgroup (2): DEPFET pixel sensor

Current Belle II PXD

- First use of the technology in HEP experiment
- Current integration time: 20 μ s

Sensor R&D

- Gain increase with shorter FET length L
 - higher amplification in pixel → thinner oxide
 → improved radiation tolerance
- Extend Cu interconnection layer into pixel array
 - improve the signal integrity of fast signals (e.g. "clear" and "gate")

ASIC R&D

- Faster driving and readout circuit
 - Integration speed x2

More aggressive option

- Rotate readout direction of pixel array by 90°
 - Additional improve on integration speed x3

Switcher

 $\frac{\mathrm{d}I}{\mathrm{drain}} \propto$

 $t_{\rm OX}$

R&D subgroup (3): SOI pixel sensor

Silicon-On-Insulator pixel (SOIPIX)

- CMOS circuit produced on silicon wafer isolated by a buried oxide (BOX) layer
 - Full depleted sensor: Fast signal, good S/N
 - Logics w/o well structure: High density, small capacitance
 - Complex circuit can be implemented in each pixel
- Produced by LAPIS semiconductor

SOI talk by T. Miyoshi (Sep 29)

Test pulse

(Capacitive input)

Dual Timer Pixel (DuTiP) concept

- Alternative operation of two timers allows the next hit before the trigger arrival for the previous hit.
 - Hit loss probability due to pile-up expected to be ~0.03% at 113MHz/cm² (assuming 8us trigger latency)

Rough estimation of final power consumption: about 0.1 W/cm²

R&D subgroup (3): SOI pixel sensor

45

DuTiP 1st prototype

Chip size	6x6 mm ²
Pixel size	45x45 μm²
Thickness	50 μm ^(*)
Clock	15.9 MHz (63ns)
Expected noise	about 86 e ⁻
(*) chip to be thinned to 50um in future	

Circuits already fabricated

- Modified ALPIDE (low power) analog circuit
- Basic in-pixel digital circuit
- Circuits still to be fabricated
 - Sophisticated pixel scanning circuit

Pixel layout ш

Sensor evaluation board

Prototype performance evaluation on-going

digital part working as expected Beam test to be performed

DuTiP 2nd prototype plan

Plan to submit by the end of 2021 (depends on MPW schedule)

- Full functionality
- Semi-final chip size

R&D subgroup (4): CMOS pixel sensors

R&D subgroup (4): CMOS pixel sensors

TJ-Monopix1

- Characterization started in 2018
- Noise, threshold, gain, hit efficiency, and radiation hardness

TJ-Monopix2

- Chip size: 2x2 cm² Chip is alive and working
- Synchronization, configuration, DACs
- Analog pixels respond to injection
- Chip detects radiation

Analysis of beam test data on-going

Proof-of-principle prototype

0

Specification

	TJ-Monopix2
Chip Size	2x2 cm ² (512x512 pix)
Pixel size	$33.04\times33.04~\mu\text{m}^2$
Total matrix power	170 mW/cm ²
Noise	< 8 e ⁻ (improved FE)
LE/TE time stamp	7-bit
Threshold Dispersion	< 10 e ⁻ rms (improved FE + tuning)
Minimum threshold	< 200 e ⁻
In-time threshold	< 250 - 300 e ⁻
Efficiency at 10 ¹⁵ n _{eq} /cm², 30 μm epi	> 97 %
Efficiency at 10 ¹⁵ n _{eq} /cm ² , Cz	> 99 %

(red) Expectations

More details about measured performance of TJ-Monopix will be presented in J. Dingfelder's talk (Sep 29).

VERTEX2021

VTX: An integrated design for fully pixelated option

General concept of VTX

- Fully pixelated detector with CMOS sensors
 - Chip size: 2x3 cm² (same chip in all layers)
- Low material budget:
 - sensor thickness ~50 μ m
 - $0.1\%X_0$ (L1-2) / $0.3\%X_0$ (L3-4) / 0.8% X₀ (L5) per layer
- Different integration among inner (L1-2), middle (L3-4), and outer (L5) layers
 - inner: Self supportive silicon ladders, w/ air cooling
 - mid, outer: CF support frame, w/ water cooling

L5 ladder structure

16

Simulated VTX Performance

- VTX performance simulation with Belle II analysis framework
 - Connect to the existing outer-detector tracking
 - Realistic beam backgrounds with accurate Geant4 geometry

Realistic pixel sensor model implemented

- 30 μm depletion layer
- 33x33 μm^2 pixels with 7-bit ToT
- tuned with TJ-Monopix1 beam test data

Cluster charge distribution

Simulated VTX Performance

- VTX performance simulation with Belle II analysis framework
 - Connect to the existing outer-detector tracking
 - Realistic beam backgrounds with accurate Geant4 geometry

Realistic pixel sensor model implemented

- 30 μm depletion layer
- 33x33 μm^2 pixels with 7-bit ToT
- tuned with TJ-Monopix1 beam test data

Tracking and vertexing simulation

- Geometry
 - 5 or 7 barrel layers
 - Simple layer design with realistic material budget
 - 0.1%X0 (inner) + 0.3%X0 (outer) per layer

Full tracking chain

- VTX-standalone tracking
- CDC-standalone tracking
- MC events of Y(4S)→BB generated

Improvements in low pt thanks to less material budget

then combined

Simulated VTX Performance

- VTX performance simulation with Belle II analysis framework
 - Connect to the existing outer-detector tracking
 - Realistic beam backgrounds with accurate Geant4 geometry

Realistic pixel sensor model implemented

- 30 μm depletion layer
- 33x33 μm^2 pixels with 7-bit ToT
- tuned with TJ-Monopix1 beam test data

Tracking and vertexing simulation

- Geometry
 - 5 or 7 barrel layers
 - Simple layer design with realistic material budget
 - 0.1%X0 (inner) + 0.3%X0 (outer) per layer

Full tracking chain

- VTX-standalone tracking
- CDC-standalone tracking _ then combined
- MC events of Y(4S) \rightarrow BB generated

Longitudinal impact-parameter resolution $\sigma(Z_0)$

Improved thanks to better sensor position resolution

Summary and Outlook

- There is an opportunity for VXD upgrade in Belle II
 - 2nd long shutdown for SuperKEKB improvement in ~2026-2027
- Requirements on upgrade
 - High spatial resolution, small material budget, good hit rate and radiation tolerance
- Several technology R&D on-going to assess the performance and integration feasibility
 - Steady process: prototype delivered and performance evaluation started
- Simulation confirmed excellent performance of VTX fully pixelated option

Recent technology application in HEP

DSSD	Belle/Belle II SVD, BaBar SVT
DEPFET	Belle II PXD, X-ray astronomy
SOI	X-ray astronomy
CMOS	STAR pixel, CBM MVD, ALICE ITS, ATLAS ITK R&D

- CDR to be prepared in 2022: Still a lot to do in a short time
 - Concept to be proven by beam tests with full-scale prototype
 - Physics benchmarking with full simulation

Technology R&D contributions outside Belle II highly welcome!

Thank you for your attention

Estimated material budget of VTX

Very simple detector design, but realistic material budget:

- 0.1% X0 (inner layers) + 0.3% X0 (outer layers)
 - 5 layers VTX: L1-2 inner + L3-5 outer, 7 layers VTX: L1-3 inner + L4-7 outer
- Only barrel layers (no disk sensors in forward)