

MAX-PLANCK-INSTITUT FÜR PHYSIK

Operational Experience of the Belle II Pixel Detector

Boqun Wang

On Behalf of the Belle II PXD Collaboration MPI for Physics, Munich, Germany

VERTEX 2021, September 27th, 2021

SuperKEKB & Belle II

SuperKEKB

- Upgrade of existing KEKB accelerator.
- B factory: $E_{cm} = M_{Y(4S)} \approx 10.58 \text{ GeV}.$
- Target luminosity: 6 x 10³⁵ cm⁻² s⁻¹
 - Nano-beam technology and increased current.
 - Challenge: higher background.
- World record: 3.12 x 10³⁴ cm⁻² s⁻¹ @ June 2021.

Belle II

- Upgrade of Belle detector.
- Target: 50 ab⁻¹ by 2030.
- Totally ~213 fb⁻¹ of data until July 2021.
- Maximum trigger rate: 30 kHz.

Vertex Detector on Belle II

- Silicon Vertex Detector (SVD): [see Yuma Uematsu's talk about SVD]
 - 4 layers of 2-sided silicon strips.
 - $R \leq 140$ mm.
- Pixel Vertex Detector (PXD):
 - 2 layers of DEPFET sensors.
 - 8 inner ladders at radius 14 mm.
 - 12 outer ladders at radius 22 mm (only 2 ladders installed).
 - ~7.7 x 10⁶ pixels.
 - ~0.21% X₀ / layer material budget.

Scatter plot from data

VXD half shell

PXD Working Principle: DEPFET

- Depleted P-channel Field Effect Transistor (DEPFET) on top of fully depleted silicon bulk:
 - Fast charge collection (~ns).
 - Low power consumption.
 - High signal-to-noise ratio.
 - Thin sensors (75 um in active region).
- Working principle:
 - Collecting charges in the "internal gate".
 - Drain current modulated by collected charges.
 - Gate must be cleared after readout.
 - Internal amplification:

$$g_q = \frac{\partial I}{\partial q} \approx 500 \frac{pA}{e^-}$$

PXD Sensor / Module

- Sensor:
 - Self-supporting 75 um thin DEPFET active area.
 - Pixel size: 50x(55-85) um².
 - 250 x 768 pixels per sensor.
 - 40 sensors in total.
- Module:
 - DEPFET sensor with ASICs.
 - 6 switchers: row control, 4 rows per channel.
 - 4 DCD: 256 channel 8-bit ADC.
 - 4 DHP: data processing, trigger and timing.
 - 40 modules in total.
- Ladder:
 - Two modules glued to one ladder.
 - 20 ladders in total.
- Design: 1% occupancy (layer 1), 3% occupancy limit (DHP, DAQ, tracking).
- Cooling:
 - 2-phase CO₂ cooling for ASICs at the end of stave.
 - N₂ gas for sensor and switchers.
- Radiation hard sensor and ASICs up to expected lifetime, measured up to 266 kGy during irradiation campaign.

PXD DAQ

- PXD readout:
 - Rolling shutter readout mode.
 - Read 4-rows of pixels (1 switcher channel) at a time (~100ns).
 - Full integration time ~20 us.
- PXD has significant larger unfiltered raw data rate than other Belle II detectors:
 - Separate readout path.
 - Need to remove data that not belonging to tracks.
 - On High Level Trigger (HLT), Region of Interest (ROI) is calculated from track information.
 - 1/10 reduction rate.
 - Send ROIs back to PXD readout and select pixels within ROIs.
- Online selection has been tested but not turned on yet.

PXD Module Calibration

- Modules need characterization before installation.
 - Continuous optimization of working points during operation.
- Median drain current pedestals stored on DHP for zero suppression.
- Pedestal optimization on DCD:
 - Pedestal spreading compression via switchable offsets for input currents per pixel.
 - Noise reduction via Analog Common Mode Correction (ACMC).
 - Low noise < 1 ADU (~200 e⁻).

Calibrated Pedestals

Compro

Noise of 0.61 ADU

current

PXD Performance: Signal and Noise

- Most Probable Values (MPV) of cluster charge and SNR uniform over 24 ASIC combinations within one module.
- Signal to Noise Ratio ~ 30 to 50.
- Homogeneous noise and signal response across module matrix.

PXD Performance: Hit Efficiency

- Defined by hits found close to track intercepting points in modules.
- Influenced by tracking quality and alignment.
- Take only tracks with good tracking and $p_T > 1$ GeV/c.
- Bad switcher channels (4 rows each) degrade overall hit efficiency by ~3% (good regions ~ 98% hit efficiency).

PXD Performance: Resolution and Lifetime

- Vertex resolution with PXD is close to MC expectations.
 - d_0 resolution of 14.1 um (data), 12.5 um (MC).
- D lifetime measurement:
 - 4th Belle II physics paper, submitted to PRL, arXiv: 2108.03126.
 - Belle II proper time resolution ~2x better than Belle.
 - Precision better than all previous measurements and comparable with world average.
 - Vertex detectors played key role in this measurement.

 $\tau(D^0) = 410.5 \pm 1.1 \text{ (stat)} \pm 0.8 \text{ (syst) fs}$ $\tau(D^+) = 1030.4 \pm 4.7 \text{ (stat)} \pm 3.1 \text{ (syst) fs}$ World Average (410.1 ± 1.5) fs (1040 ± 7) fs

PXD Operation

- In general, PXD operation is stable for 2020/2021.
 - There are still several challenges for operation.
- Due to COVID-19, limited local PXD manpower in KEK.
 - Most of the PXD expert shifts are done in remote.
- Various automations to reduce the load of the shifters.
- New people are on boarding to the PXD group, for operation and R&D, even on the hardware side.

PXD Operation: Beam Loss Events

Beam loss event on May 10th ,2021:

- Not the first of such incidents, but the most serious one for the damage of a single module.
- Partial damage of PXD, diamond sensor readout and collimator.
- The reason is not fully clear.
- Not always detected early enough to safely dump beams before damage happens.
- Impact on PXD:
 - Large instant radiation dose.
 - Permanent damage: new dead switcher channels (unexpected behavior).

R&D to understand the mechanism of switcher damage:

- Radiation test at MAMI @ Mainz.
- Damage effect reproduced during tests.
- Discussion to continue tests at MAMI.

Damaged collimator jaws

PXD Operation: Mitigation for Beam Loss Events

- Several systems to detect beam disturbance and issue beam abort signal:
 - Diamond sensors on the beam pipe.
 - Beam loss monitors along the rings.
 - Others.
- Early detection of beam abort with CLAWS:
 - Scintillator Light and Waveform Sensors.
 - Close to interaction point.
 - Faster to detect and issue beam abort signal.
 - Speed up abort process time by ~10us (about one revolution of the beam).
 - Turned on for beam abort since end of May 2021.
- Reduce beam dump time on accelerator side.
- PXD emergency power off:
 - $O(100 \text{ms}) \rightarrow O(100 \text{us}).$
 - Tests still ongoing.
 - Could also harm on its own.

PXD Operation: Radiation Effect (Threshold Shift)

- X-ray radiation campaign @ 266 kGy:
 - Oxide damage causes shift of MOSFET threshold voltages.
 - Threshold voltage shift can be compensated by adjustment of gate voltage.
- Integrated dose in PXD:
 - Rough estimate < 20 kGy until end of 2020.
 - More precise measurements for 2021 in progress.

Source Current

Gate Voltage

PXD Operation: Radiation Effect (HV Current)

- HV is the depletion voltage of the DEPFET sensor.
- Increased HV currents of some modules:
 - Some of them reached power supply limits.
 - Can't reach set voltage: worse SNR and efficiency.
- Recovery observed during (beam off / HV on) and (beam on / HV off) times.
- X-ray irradiation campaign to investigate the effect:
 - Reproduced the increasing HV current w/ irradiation and annealing effect w/o irradiation.
 - Saturation of HV current at certain dose of radiation.
- Mitigation by modifying PS units to higher HV current limits.
 - HV current limit: 1.4 mA \rightarrow 2.8 mA \rightarrow 5 mA \rightarrow 14 mA
 - Part of the PS units modified in parallel to the data taking.
 - Remaining units have been modified to 14mA HV current limit during summer shutdown.
- Interpretation: charge-up effect at handle wafer bond oxide and avalanches at bulk.

PXD Operation: Backgrounds

- Single-beam backgrounds:
 - Touschek scattering: scattering of particles within a bunch.
 - Beam-gas scattering: Coulomb scattering and Bremsstrahlung (scattering off gas molecules).
 - Injection background: continuous injection of charge into beam bunch.
 - Synchrotron radiation.
- Luminosity backgrounds:
 - Two-photon background.
- Background effects:
 - Deteriorate performance (fake hits).
 - Contributes to occupancy (especially during injection).
 - Maximum occupancy 3%: at which the ASICs can't handle the high data rate.
 - Irradiation to sensors: aging or damages.

PXD Operation: Injection Backgrounds

- Continuous injection in SuperKEKB:
 - Top-up injection rate up to 50 Hz.
 - At design luminosity, beam lifetime is ~few minutes.
 - Injected bunches produce high backgrounds. Damping takes a few ms.
 - Use trigger veto to avoid noise:
 - full veto for all Belle II detectors.
 - gated veto for all except PXD due to long integration time (20 us).
- Elevated PXD occupancy after full veto for a few us:
 - Injection spikes can saturate PXD readout and cause partial data loss.
 - In 2021, the ratio of partial data loss is far from being critical (in subper mille level).
 - In the future, to reduce data loss, gated mode can be used to blind PXD when injected bunches passing by.

PXD Operation: SR Background

- IR region is designed to avoid direct SR photons hitting central beam pipe
- Observed large SR background:
 - Happened in –x modules after change of optics.
 - Dominated by secondary photons
 - Appear during HER injections with clear time structure
 - Origin: back-scattering photons from SR fan hitting +x edge of Ti beam pipe
- Effects on PXD:
 - Highly localized hit density
 - Inhomogeneous module irradiation
 - Deterioration of clustering and tracking
- Mitigation:
 - Small modification of HER beam orbit
 - New beam pipe with additional gold plating to be installed with PXD 2022 update.

PXD2022

PXD remains incomplete:

- Only 10/20 ladders installed:
 - Layer 1 is full with 8 ladders.
 - Layer 2 only has 2 ladders out of 12.
- Good vertexing performance so far, but not guaranteed for higher luminosity.

Ongoing efforts to build complete PXD:

- Same technology but improved manufacturing process.
- Module production & HS assembly & testing ongoing.
- PXD2 to be installed during next long shutdown 2022.

Summary

- PXD is working well since the start of Belle II data taking in 2019.
- The performance of PXD is excellent.
- Superior lifetime resolution compared to Belle/BaBar as demonstrated by the D lifetime measurement.
- There are damaged switcher channels due to beam loss events.
- Efforts have been made to automate the operation for reducing shifters' load.
- Full PXD detector:
 - Production, testing and assembly is ongoing.
 - Planned installation in 2022.

Backup

PXD Readout and Control

- Rolling shutter readout mode with low power consumption:
 - Signal read gate by gate.
 - Each gate consists of 4 rows.
 - Gate is cleared after reading.
 - Read-clear cycle for each gate is ~100ns.
 - Full integration time ~20 us (1 "frame").
 - ~2x SuperKEKB revolution time (~10 us).
- Sampling by DCD: drain currents measured once.
- Pedestal correction and zero suppression on DHP.
- Event building and trigger handling on DHH.
- ROI selection on ONSEN.
- Filtered data transferred to Belle II DAQ for further processing and storage.

PXD Assembly & Installation in 2018

PXD assembly at KEK:

- Assemble mechanical ladder frame SCB.
- Provide cooling via 2-phase CO_2 and forced N_2 flow. Installation to Belle II in late 2018:
- SVD + PXD + BP marriage.
- VXD installation into Belle II.

PXD Operation: Gated Mode

- Gated mode can blind PXD modules when noisy bunches pass.
 - To protect PXD from the noises from the injected bunches.
 - The voltages applied on the DEPFET sensors are changed.
 - Newly created charges are not collected.
 - Charges at internal gate are preserved.
 - Gate twice per readout frame.
- Challenges:
 - Switching into gated mode results in pedestals fluctuations, produce noise on their own.
 - Synchronization with injections.
 - Optimizing module parameter for GM.
- Currently not ready for regular gated mode operation.

