Simulation of the Belle II Silicon Vertex Detector

The 30th International Workshop on Vertex Detectors

Mateusz Kaleta, on behalf of the Belle II SVD group Institute of Nuclear Physics Polish Academy of Sciences

September 27th 2021

- Belle II SVD simulation framework
- Comparison with collision data
- Optimisation studies
- Summary

- Drift and diffusion
 - \rightarrow charge carriers drift in the combined effect of electric and magnetic fields
 - ightarrow e-h clouds generated in finite segments along the track
 - ightarrow smearing of charge clouds by $\sigma = \sqrt{D \ t_{drift}}$ (D-diffusion coeff.)
- Charge sharing and readout electronics simulation
 - → every 2nd strip connected to readout electronics: need to simulate floating strips and coupling between adjacent channels (next slides)
 - $\rightarrow \,$ analog waveform, noise simulation, sampling and zero suppression

Belle II SVD simulation charge sharing

- C_i interstrip capacitance
- Cb capacitance to the back of the sensor
- C_C decoupling capacitance to the preamplifier input

Sensor side	C _i [pF/cm]	C _b [pF/cm]	C _C [pF/cm]
р	0.40 - 1.05	0.08 - 0.12	15
n	0.40 - 0.60	0.26 - 0.42	30

Based on simplified charge division model we define three coupling coefficients between implanted strips and preamplifier inputs. Readout charges are computed as:

$$S_{i}^{READOUT} = \begin{bmatrix} C_{2} \\ C_{1} \\ C_{0} \\ C_{1} \\ C_{2} \\ C_{1} \\ C_{2} \end{bmatrix}^{T} \begin{bmatrix} S_{-2} \\ S_{-1} \\ S_{0} \\ S_{1} \\ S_{+1} \\ S_{+2} \end{bmatrix}$$

- C₀ coupling between the readout implant and its preamplifier input
- C₁ coupling between the floating implant and the adjacent readout channel
- C2 coupling between two readout channels

Sensor side	C ₀ [%]	C ₁ [%]	C ₂ [%]
р	93 - 97	42 - 45	< 4
n	97 - 98	35 - 37	< 1

• We observe good match between simulated events and collision data for cluster charge and cluster signal-to-noise-ratio distributions ($SNR_{cl} = S_{cl}/N_{cl}$, where S_{cl} , $N_{cl} = \sqrt{\sum_{i=1}^{nstrips} N_i^2}$ are the total charge and noise of a cluster)

Comparison with collision data cluster size

- Average cluster size underestimated in simulation, indicating that simplified charge division model does not describe charge sharing accurately
- This level of disagreement was not observed in test-beam data, previously used to tune the simulation. Test-beam data had only perpendicular tracks, additional difference could be due to a different zerosuppression selection applied during physics runs (*SNR* > 3) with respect to test-beam (*SNR* > 5)
- Based on these observations we decided to use data-driven method to better estimate inter-channel signal coupling

Optimisation studies

We use perpendicular tracks (large angle on other side) with readout strip incidence to estimate signal coupling from readout implants to readout channels.

$$C_0 = \frac{S_0}{S}, \ C_2 = \frac{1}{2} \frac{S_{-1} + S_{+1}}{S}$$

where:

- S_i measured readout charges
- $S = \sum_i S_i$ total measured charge

Tracks with floating strip incidence are used to estimate signal coupling from floating implants to readout channels.

$$C_1 = \frac{1}{2} \frac{S_{-1} + S_{+1}}{S}, \ C_3 = \frac{1}{2} \frac{S_{-2} + S_{+2}}{S}$$

where C_3 is an additional coupling to further neighbour not used previously in simplified charge division model.

• With improved charge-sharing parametrisation we are able to model cluster size distribution more accurately, while the total charge of a cluster remains unchanged

- We presented Belle II SVD simulation framework overview and its tests against collision data
- We observe a good match in cluster charge and signal-to-noise-ratio distributions, but found some discrepancies in terms of cluster size
- Using data-driven method we are able to improve charge sharing parametrisation that provides better agreement in cluster charge distribution