A silicon pre-shower detector to enable di-photon measurement in the FASER experiment at CERN

Lorenzo Paolozzi

On behalf of the FASER collaboration

VERTEX 2021

Proposal for a new pre-shower detector

Current preshower:

2 layers of tungsten (1X0) + scintillating detectors \implies No XY granularity.

Proposal for a new pre-shower detector

Current preshower:

2 layers of tungsten (1X0) + scintillating detectors \implies No XY granularity.

The project:

- A high-granularity/high dynamic range pre-shower based on monolithic silicon pixel sensors.
- Targeting data taking in 2024, during LHC run 3.

L. Paolozzi - VERTEX 2021

The goal of the new pre-shower

• The goal is to have independent measurement of two very collimated photons.

The goal of the new pre-shower

• The goal is to have independent measurement of two very collimated photons.

L. Paolozzi - VERTEX 2021

Pre-shower requirements

Reference case: ALP production/decay via ayy (aWW) coupling

Pre-shower requirements

Reference case: ALP production/decay via ayy (aWW) coupling

1806.02348.pdf (arxiv.org)

Pre-shower requirements

Reference case: ALP production/decay via ayy (aWW) coupling

Main requirements:

- Detector area: ~20x20 cm²
- Photon resolution: 200 µm

Pre-shower beseline design

Pre-shower total length = 246.16mm Residual space ~ 4mm

UNIVERSITÉ

DE GENÈVE

Pre-shower beseline design

Pre-shower total length = 246.16mm Residual space ~ 4mm

UNIVERSITÉ

DE GENÈVE

The new pre-shower will fit in the present envelope between the tracker and the calorimeter.

Event reconstruction performance

Charge distribution [fC]

L. Paolozzi - VERTEX 2021

Event reconstruction performance

Charge distribution [fC]

With simple cluster reconstruction method

distance[mm]	efficiency [2- gamma truth matched]
0.2	0.73
0.3	0.90
0.5	0.91
1.0	0.90
2.0	0.90

Corresponding fake rate from 1-photon events ~2-4%

L. Paolozzi - VERTEX 2021

Event reconstruction performance

Charge distribution [fC]

With simple cluster reconstruction method

distance[mm]	efficiency [2- gamma truth matched]
0.2	0.73
0.3	0.90
0.5	0.91
1.0	0.90
2.0	0.90

Corresponding fake rate from 1-photon events ~2-4%

Many parameters at play!

First results from deep neural network analysis show great improvement.

Few words on the background...

Di-photon background is not expected in FASER+pre-shower

→ The most challenging background comes from **DIS neutrino interactions**.

Few words on the background...

Di-photon background is not expected in FASER+pre-shower

→ The most challenging background comes from **DIS neutrino interactions**.

Expected neutrino interactions in the pre-shower for 90 fb⁻¹:

~40 electronic neutrinos

~120 muonic neutrinos

~1 tau neutrino

~10% of these events are accompanied by photon pairs

Few words on the background...

Di-photon background is not expected in FASER+pre-shower

→ The most challenging background comes from **DIS neutrino interactions**.

Expected neutrino interactions in the pre-shower for 90 fb⁻¹:

~40 electronic neutrinos

- ~120 muonic neutrinos
- ~1 tau neutrino

~10% of these events are accompanied by photon pairs

- Rejection with emission angle
- Additional charged particles (e.g. Charged lepton)

The monolithic ASIC in 130nm SiGe BiCMOS

• Monolithic ASIC in **130nm SiGe BiCMOS**.

Main specifications						
Pixel size	65 µm side (hexagonal)					
Pixel dynamic range	0.5 ÷ 65 fC					
Cluster size	O(1000) pixels					
Redout time	200 µs					
Power consumption	< 150 mW/cm ²					
Time resolution	< 300 ps					

Selected technology: SG13G2, by IHP microelectronics.

- Chip size: 1.5 x 2.5 cm².
- Pixel size: hexagonal pixels, 65 µm side.
- Local analog memories to store the charge.
- Ultra fast readout with no digital memory on-chip to minimize the dead area.
- In between an imaging chip and a HEP detector.

ASIC design in collaboration between CERN, University of Geneva and KIT

Super-pixel structure

Supercolumn Pixel row structure x8 pixels pixel[0] diagram To digitization Analog Biasing memory circuit Comparator Memory control Amplifier + driver Mask Testpulse **Pixel row** High Voltage in pixel in digital column out[0] out[2] FASTOR_even out[4] out[6] out[1] out[3] FASTOR_odd out[5] out[7]

Plane layout

	←		~160 mm		\longrightarrow
150 mm	*				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

L. Paolozzi - VERTEX 2021

150 mm

	←		~160 mm		\longrightarrow
Î					
V					

Plane layout

Pre-production ASIC

- Fully functional prototype 4 column version.
- Two alternative test layouts with 3 columns.
- Submitted July 2021.

Project timeline

2020				20	21		2022				2023				2024				
Q2 (Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Found	Foundry Test Small prototype ASIC Design Foundry Test Pre-production ASIC Design Foundry Test Pre-production ASIC																		
IF	hermo	o-proto		Design	Prod	Test					The	rmo-m	echanic	al proto	otype w	e with heater modules			
De	emon	strator		Desig	n Prod Design	Test Pro	Read-or	ut Test	N	lodules	& mec	hanics	Demo to t	nstrato est mo	r with p dules &	re-proc full rea	duction ad-out o	ASIC chain	
Pr	rototy	rpe		Read-out Design Prod Test Prototype plane with production ASI to test modules & read-out chained Modules & mechanics Design Prod to test modules & read-out chained QA/Test Operation Design Design									ASIC chain						
Pr	roduc	tion		Read-out optimisation Design Prod Test Fir Modules Design Prod QA/Test QA/Test Modules in planes Assembly									inal pla product	ine ion					
Fu	ull det	tector		Pre-shower assembly & surface commissioning Underground installation Commissioning with beams								ns	Asso com	embly & nmissio	k ning				
				Data taking															

Conclusions

- The new FASER pre-shower project is funded by SNSF + contributions from Japan and Mainz.
- This new module will **extend the discovery potential of FASER**, enabling the separation of two photons in the final state of LLPs decays.
- The **design of a monolithic ASIC** capable to distinguish clusters from two ultracollimated high-energy EM showers is in progress.
- The new pre-shower will be installed in the winter break 2023/2024 to take data during LHC Run 3.

Extra Material

L. Paolozzi - VERTEX 2021

E(y2)[GeV]

Event generation and sensitivity reach: Felix Kling and Théo Moretti

L. Paolozzi - VERTEX 2021

Event generation and sensitivity reach: Felix Kling and Théo Moretti

Event generation and sensitivity reach: Felix Kling and Théo Moretti

Di-photon physics with FASER

- Search for **Axion-Like Particles** (ALP): a broad class of pseudoscalar particles with couplings to photons. <u>https://doi.org/10.1103/PhysRevD.99.095011</u> <u>https://doi.org/10.1103/PhysRevD.98.055021</u>
- Models introduced to explain the **anomaly reported by KOTO** collaboration. <u>https://doi.org/10.1103/PhysRevD.102.015032</u>
- Any model involving LLPs that can decay into **final states involving neutral pions**, which then decay into photons. Ex1: A light dark scalar boson which decays into 2 neutral pions. Ex2: A sterile neutrino N decaying via $N \rightarrow v \pi 0$ <u>https://arxiv.org/abs/2008.12598</u>
- All extensions to the previous case where the **LLP decays into two charged pions and a neutral pion**. In this case the information from the pre-shower and the one from the tracker would complement each other to reconstruct the event final state.

In all the above cases, the photons will be extremely **highly energetic (O(100 GeV – 1 TeV))**, **very collimated** and indistinguishable from each other and from any other neutral particle converting in the current FASER calorimeter. **The proposed high-granularity pre-shower will enable these measurements.**

Event recontruction challenges

• Very large photon spectrum, depending on particle mass and coupling.

• Most events are very asymmetric.

