

The 100µPET project:

an ultra high resolution small-animal PET scanner

VERTEX 2021 – YSF talks 28/09/2021 And the second s

Positron Emission Tomography (PET) imaging

mvicente@cern.ch - 28/09/21

- PET is a nuclear medicine method to study metabolic processes in the body
 - A radiotracer is injected in a body and positrons from the radionuclide annihilates with electrons of the nearby tissue, emitting two **back-to-back** 511 KeV photons

Pixel pitch: 4 mm LOR volume: 20x4x4 = 320 mm³

3

DOI: 0.2 mm Pixel pitch: 0.1 mm LOR volume: 0.2x0.5x0.5 = 0.05 mm³

Positron Emission Tomography (PET) imaging

Is it the time for a change of paradigm ?

mvicente(0) cern ch = 28/00/21

- PE1 ages are reconstructed from the projections of the LoRs
 - To access ultra-high resolution molecular imaging ⇒ reduce the LC Comparison and Conclusion
 - Improved depth-of-interaction measurement exploiting much improved spatial, DOI and time resolutions
 - Better timing resolution for coincidence measurement

mproved spatial resolution with higher volume granularity \rightarrow HEP based silicon pixel detectors

Overview of current small-animal PET scanners

Positron Emission Tomography (PET) imaging

mvicente@cern.ch - 28/09/21

The higher PET granularity will reduce the noise-like combinatorics artifacts during projection of LoRs Conventional vs. multi-layer scanner

9/2021

G. Jacoburgei CIDM Dresside

28/00/2024

The problem of Power Consumption The Thin Time=or=rugnr (II=rEI) project

mvicente@cern.ch - 28/09/21

Timing and efficiency

- TT-PET demonstrator <u>monolithic</u> chip produced, containing:
 - Matrix of 3x10 pixels of area 500x500 µm²
 - Pre-amplifier + discriminators
 - 20 ps binning TDC

7

- Read-out logic and serializer
- Test beam results from CERN SPS

TT-PET prototype with 500 x 500 μ m² pixels

do better than this ??

TT-PET chip: Efficiency for CERN testbeam

The Thin Time-of-Flight (TT-PET) project

By the end of the TT-Project in 2019

8

- Demostrator chip achieved target performance,
- P. Valerio et al., JINST 14 (P07013) (2018), L. Paolozzi et al., JINST 13 (P04015) (2018), L. Paolozzi et al., JINST 14 (P02009) (2018)

mvicente@cern.ch - 28/09/21

- Scanner completely engineered,
- D. Ferrere et al., arXiv:1812.00788
- Performance simulated
- E. Ripiccini et al., https://arxiv.org/abs/1811.12381
- Iterative reconstruction produced
- D. Hayakawa PhD thesis, http://dpnc.unige.ch/THESES/THESE_HAYAKAWA.pdf
- Simulations and prototyping work showed that a change of paradigm in PET imaging is possible with monolithic pixel sensors
- Can we do even better? Must reduce even further the "LoR volume":
 - either by having better time resolution, or
 - By having better spatial resolution, pushing the position measurement down to the intrinsic limits given by the positron mean free path in body

The 100µPET scanner New SINERGIA project evolving from the TT-PET

- D Major scanner simplified and improved redesign, avoiding acceptance inefficiency from cooling blocks
 - **Description** μ PET quad-module (current base-line): 6 cm x 5 cm, x5 chips staggered \rightarrow 150 cm² detector module!
 - **12 quad-modules** are stacked together in a tower, and 4 towers compose the scanner \rightarrow 60 detection layers x4 = <u>960 chips!</u>

mvicente@cern.ch - 28/09/21

Full **UPET** scanner

- The power density per unit of volume is very high: 250 W, to be contained in a very small volume
- The amount of services and interconnections are much denser, requiring **innovative** design

The 100µPET scanner Sensitivity and Resolution

Monte Carlo simulations has shown a disruptive jump in the scanner's resolution and sensitivity

- Increase the active zone in the silicon sensor from 50 μm to 250 μm for higher sensitivity
 - **a** also increasing the volumetric granularity with **100** μ m pixel pitch
- The thicker sensor changes the conversion efficiency* from 27% (22.5% photoelectric conversion in absorber and 4.5% from Compton effect in silicon) to 45% (additional 18% from Compton in the thicker silicon sensor)

mvicente@cern.ch - 28/09/21

*single photon absorption efficiency

a daplated (vallow) ragion is massured

10

The 100µPET scanner

Conclusions

12

- PET scanners are an important diagnostic tool that has been improving in an astounding way over the years and will continue to improve
- Pixelated silicon sensors have the enormous potential to enable ultra-high-resolution molecular imaging
- The 100µPET SNSF SINERGIA project will deliver a small-animal scanner based on silicon technology with expected 0.3 mm spatial resolution and one order of magnitude better volumetric spatial resolution
 - **TOF below 10ps** could be added, when delivered by the **MONOLITH** project
- Silicon-sensor technology will improve and its cost will go down.
 In the future, scanners larger than those for small-animals could be realised
 - (...maybe a human-head scanner with silicon is the following step...)

mvicente@cern.ch - 28/09/21