Exploring Track Trigger Parameters for Exotic and Long-Lived Particle Searches

$\bullet \bullet \bullet$

Jessica Nelson Karri DiPetrillo, Jesse Farr, Chris Guo, Tova Holmes, Katherine Pachal September 27 2021

Motivation and Goals

- Current ATLAS and CMS triggers are not sufficient for all long lived particle (LLP) and exotic searches.
 - No tracking information in hardware level (first stage of trigger).
 - For many LLPs, track signatures are the most conspicuous feature.
- Future hardware-based track triggers could be adapted to better accommodate these searches.
- Our study is looking at the best parameters for such a trigger in the context of a range of typical LLP and exotic model signatures.

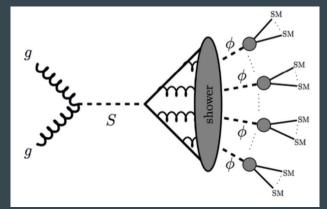
Choice of Models / Signatures

- Difficult to trigger on:
 - $\circ \quad Low \ pT:$
 - Soft Unclustered Energy Patterns (SUEPs)
 - Higgs Portal
 - \circ High d0:
 - Displaced leptons
 - Only signature is a track:
 - Stable charged particles
- As displaced vertices are a common part of many signatures we wanted to include a model that has them.

Study Structure

For each model:

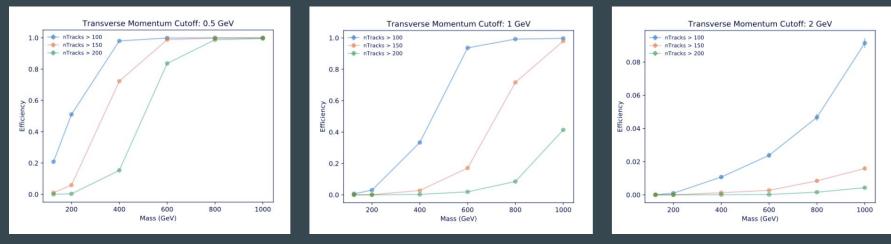
- 10,000 events for each model, mediator mass, and lifetime.
- Look at applicable parameters (pT, d0, number of tracks).


Apply cuts in three stages:

- Detector acceptance
- Cuts on track parameters of interest
- Number of remaining tracks

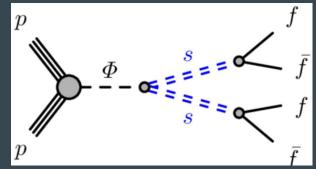
Check efficiency for each cut combination.

- SUEPs one of the easier to analyze thanks to prompt decay.
- However a lot of low pT tracks.
- Looking at range of scalar masses between 125-1000 GeV.



• Cut stages:

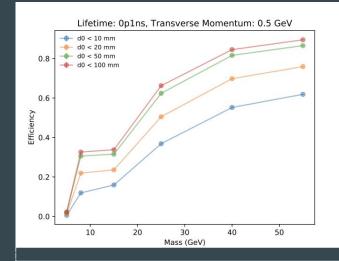
Cut	Value	Stage
Charged	Yes	Stage 1
Stable	Yes	Stage 1
Eta	≤ 2.5	Stage 1
p_T	> 0.5, 1, 2 GeV	Stage 2
Number of tracks	> 100, 150, 200	Stage 3


SUEP Results

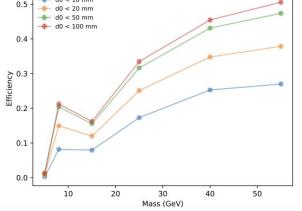
- Low mass low efficiency.
- pT more impactful than number of tracks.
- Can use HT as additional measure due to low 2 GeV pT cut efficiencies.

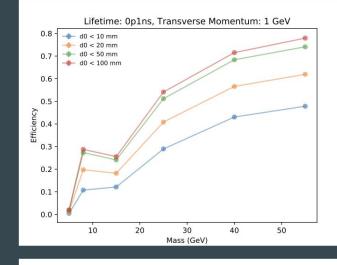
Higgs Portal

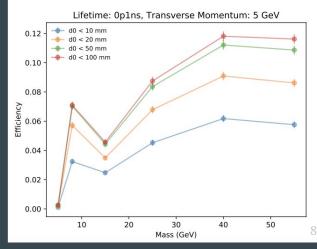
- More difficult to analyze since displaced.
- 1, 0.1, 0.01 ns lifetimes.
- Range of scalar masses between 5 55 GeV.
- Cut stages:



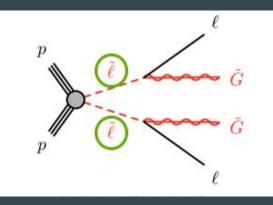
Aad, G, et al. "Search for Long-Lived Neutral Particles Produced in Pp Collisions at Sqrt(13 TeV) Decaying into Displaced Hadronic Jets in the ATLAS Inner Detector and Muon Spectrometer."

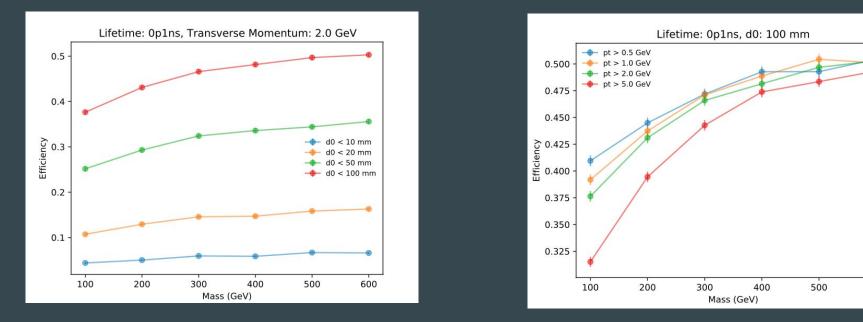

Cut	Value	Stage
Charged	Yes	Stage 1
Stable	Yes	Stage 1
Eta	≤ 2.5	Stage 1
Decay vertex	None or ≥ 200 mm from production vertex	Stage 1
Production vertex	< 300 mm from origin	Stage 1
p_T	> 0.5, 1, 2, 5 GeV	Stage 2
d_o	< 10, 20, 50, 100 mm	Stage 2
d_o	> 2 mm	Stage 2
Number of tracks	≥ 5	Stage 3


Higgs Portal Results


- Low mass low efficiency.
- Minimal d0 impact lacksquareat shorter lifetimes.
- pT more impactful lacksquarethan d0.

Lifetime: 0p1ns, Transverse Momentum: 2 GeV d0 < 10 mm d0 < 20 mm - d0 < 50 mm 🔶 d0 < 100 mm




Staus

- Similar to Higgs Portal except:
 - leptonic not hadronic decay higher pT
 - Stage 3 only requires 2 or more tracks.

Cut	Value	Stage
Charged	Yes	Stage 1
Stable	Yes	Stage 1
Eta	≤ 2.5	Stage 1
Decay vertex	None or ≥ 200 mm from production vertex	Stage 1
Production vertex	< 300 mm from origin	Stage 1
p_T	> 0.5, 1, 2, 5 GeV	Stage 2
d_o	< 10, 20, 50, 100 mm	Stage 2
d_o	> 2 mm	Stage 2
Number of tracks	2	Stage 3

Stau Results

- Low mass results in less extreme drop in efficiency than in other models.
 d0 more impactful than pT.
 - ____

600

Conclusions

SUEPs:

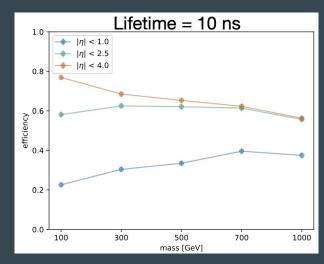
- Benefit from less restrictive pT, more restrictive #tracks.
- However can't reduce pT due to CMS limitations add HT as parameter.

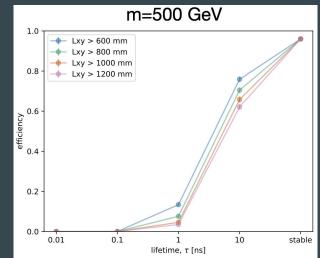
Higgs Portal:

• Benefit from less restrictive pT, more restrictive d0.

Staus:

- Benefit from less restrictive d0, more restrictive pT.
- However efficiency decrease due to higher d0 cut less substantial than with pT for Higgs Portal and SUEPs.

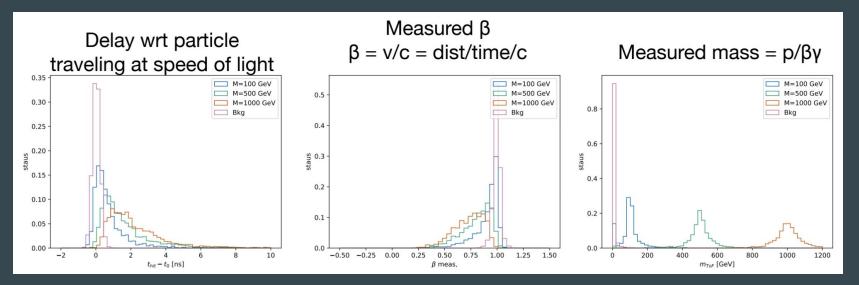

Some Additional Considerations


Top: Effect of different maximum eta (Minimum Lxy = 1200 mm, minimum z=3000 mm, no pT cut)

- Important to maintain full eta range.
- Increase to highest range helpful for only 100 GeV.

Bottom: Effect of different Lxy (|eta|<2.5, minimum z=3000 mm, no pT cut)

- Greatest improvement for 1ns.
- Still more effective to prioritize displaced leptons for 1ns.



Some Additional Considerations

Time of flight distribution:

- Currently assuming CMS L1 track information.
- Hit resolution=50ps, BS time spread and Z0 unknown.
- Mass computed with optimistic pT resolution.
 - pT=1% @ 100 GeV, above 100 GeV linear increase w/pT to 10% @ 1 TeV
- Bkg considered any non-stau tracks in event with >10 GeV.

