The Phase-2 Upgrade of the CMS Outer Tracker

Kevin Nash

for the CMS Outer Tracker Upgrade Team

HL-LHC

- LHC upgrade to increase instantaneous luminosity
 - Currently the LHC runs at $1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - Exceeds design luminosity by 50%
 - Upgrade (HL-LHC) to increase the luminosity by a factor of 5
- The HL-LHC offers large improvements and unique challenges
 - Large PU increase (~140-200 PU/event!)
 - Need a higher granularity due to the increased density
 - Unprecedented radiation levels
- Need to upgrade full CMS detector to be robust to these challenges

Design Constraints

- The Phase-2 outer tracker is designed to satisfy stringent constraints
- Radiation
 - Expected Fluence of ~10¹⁵neq/cm²
 - Needs to be efficient up to the full 3000 fb^{-1}
- Power Consumption
 - Tight FE power requirements
 - 8W for the PS module
 - 5W for the 2S module
- Granularity
 - Occupancy to be kept at or below the percent level given the increased pileup

OT Upgrade Overview

- Upgraded CMS outer tracker to be segmented into three regions and two module types
 - TBPS PS module in the inner barrel
 - TB2S 2S module in the outer barrel
 - TEDD Endcap 2S and PS modules
- TBPS uses a tilted barrel design
- Modules are based on the "p_T module" concept
 - Two sensor planes can give a coarse (fast) track p_T measurement to be used for triggering

- Stubs
 - Closely spaced sensors
 - Fast p_T measurement
 - Reject stubs with high bend
- L1 Track Trigger
 - Associate track to stubs from OT layers and extract p_T measurement
 - Trigger events based on track p_T at L1

Stubs

Modules

PS module

- 2S Modules
 - Strip-Strip layout
 - 2×1016 strips 5cm×90µm per side
 - 90cm² active area
 - In region 60 < r < 120cm
 - Spacing 1.8mm and 4.0mm
- PS Modules
 - Pixel-Strip layout
 - 2×960 Strips 2.5cm×100μm
 - 32×960 macro-pixels 1.5mm×100µm
 - 45cm² active area
 - In region 20 < r < 60cm
 - Spacing 1.6mm, 2.6mm and 4.0mm

Vertex 2021

2S Hybrids

- Service Hybrid
 - Provide LV power to 2S Module (~3.2W total)
 - Provide HV bias input
 - Send data to backend through optical cable
 - 5Gb/s or 10Gb/s
- Front End Hybrid
 - CBCs bump bonded to FEH
 - Send hits from both planes to CBCs through flex cable
 - Concentrate data from all **CBC** output

2S ROC

- CBC 254 strips (both planes)
 - Bump bonded to hybrid, hybrid wire bonded to strip sensor
 - Input: Hit array from both sensor planes
 - Cluster and correlate to create stubs
 - Output: Two data formats passed to CIC
 - L1 hits Send full event clusters along single SLVS line
 - Cluster = x centroid, width
 - Stubs Send stub info along 5 SLVS lines
 - Stub = x centroid, bend

PS Hybrids

- Power Hybrid
 - Provide power to PS Module (~5.5W total)
- Readout Hybrid
 - Send data to backend through optical cable
 - 5Gb/s or 10Gb/s
- Front End Hybrid
 - SSAs bump bonded to FEH
 - Send SSA-MPA communication through flex cable
 - Concentrate data from all MPA output

PS ROC

- SSA 120 strips (100μm)
 - Bump bonded to hybrid, hybrid wire bonded to strip sensor
 - Input: Hits from PS-S
 - Output: Two data formats passed to MPA
 - L1 hits Send full strip array along single SLVS line
 - Stub preliminary Send strip centroids along 8 SLVS lines
- MPA ROC 120x16 pixels (100µm x 1.5mm)
 - Bump bonded to pixel sensor, wire bonded to hybrid
 - Input: Hits from PS-P, and SSA output
 - Perform stub association
 - Output: Two data formats passed to CIC
 - L1 hits Perform clustering and merge MPA and SSA info along single SLVS line
 - Cluster = x centroid, y position, width
 - Stubs Send stub centroids and bend info along 5 SLVS lines
 - Stub = x centroid, y position, bend

Full Modules

- Sensor sandwich
 - CBC,2x2S-S
 - SSA,PS-S + MPA,PS-P
- CIC Concentrator chip
 - Output stub and hit data sent to CIC along SLVS lines
 - 8 FE->1 CIC, 48 SLVS in -> 6 SLVS out
- LPGBT Optical transceiver
 - 2 CIC->1 LPGBT
 - Output sent to BE board via optical link

2S Assembly

- Kapton/HV tail gluing fixture
- Sensor assembly fixture
- Hybrid gluing fixture set

PS Assembly

- PS Assembly has been studied with mechanical components
- Module assembly
 - Create sensor sandwich
 - Align PS-S and MaPSA
 - Assembly via fixture
 - Use sensor edge to align
 - Assembly via robotic arm
 - Use optical targets for alignment
- Hybrid assembly
 - Fixture based assembly
 - Precision pins used for alignment
 - Mate hybrid connectors

2S Test Systems

- 36 functional 2S prototypes
 - Two with irradiated sensors
 - IV curves consistent during assembly
 - Noise distribution as expected
- 2S module thermal cycling tests
 - Cycle module between -20° C and 20°C
 - Noise and IV curves seem stable
- Beam tests
 - Irradiated and un-irradiated sensors used
 - Very good performance at 600V after 4.6×10^{15} neq/cm²
 - Hit efficiency > 99.5%
 - Stub efficiency > 99%

PS Test Systems

- SSA prototypes (strip plane)
- FNAL beam test
 - Position resolution
 - Timing Efficiency
- MaPSA prototypes (pixelized plane)
 - 16 MPAs with sensors
- Rigorous vendor testing program using probe station
 - Tested vendors found to be over 80% yield
- Module prototypes now available
 - Half and full PS module ready
 - Prototype testing in progress!

Summary

- The HL-LHC upgrade offers a large improvement to the instantaneous luminosity, but also unique challenges
- The CMS Outer Tracker will need to be completely redesigned
 - Withstand the high radiation environment
 - Provide sufficient granularity
- Prototyping of the ambitious upgrade hardware is ongoing and is now at the stage of full module characterization

