

M. Pilar Casado (UAB, IFAE & BIST - Barcelona) on behalf of the ATLAS HGTD collaboration VERTEX 2021 Conference, Virtual, 27-30 September, 2021

The High Luminosity LHC Upgrade

- Luminosity up to 7.5x10³⁴ cm⁻²s⁻¹, pileup <μ> ~200, irradiation level TID ~2MGy
- L1 trigger rate of 1 MHz. Additional 15 years of operation and maintenance.

The High Luminosity LHC Challenges

Unprecedented opportunities with great challenges

- Peak luminosity could be 7.5 x 10³⁴ cm⁻²s⁻¹
- Statistics enlarged one order of magnitude wrt Run 1 3 sample.
- Up to 200 p-p interactions per bunch crossing!

Current LHC: mu ~40

HL-LHC: mu~140-200

ATLAS Upgrade

Motivation for HGTD

- For L= 7.5x10³⁴ cm⁻²s⁻¹, big
 Pileup.
 - Beam profile: σ_z = 50 mm, σ_t = 180 ps, 1.44 vertex/mm.
 - Especially problematic for low pT tracks in forward region.
- ITk tracker will provide better σ_z and extended coverage.
 – For η > 3, resolution is ~mm.
- HGTD can mitigate pileup effects with timing information (next slide).

- With 1.44 vertices/mm \Rightarrow < 0.5 mm ITk resolution
- ITk will only perform up to $|\eta| \sim 2-2.7$
- HGTD can assign time to each track 2.7 < $|\eta|$ <4.0
- 30-50 ps time resolution per track will give ~x6 pile-up rejection

HGTD detector

Layout

- Two double-instrumented disks per end-cap
- 2.4 < |η| < 4, 120 mm < r < 640 mm
- 3.6 M channels operating at -30°C.
- Requirements
 - $-\sigma t$ < 30-50 ps per track.
 - Occupancy < 10%</p>
 - Total power dissipation < 500 mW /cm²
 - Radiation tolerance: 2.5 E15
 N_{eq}/cm2 and 2 MGy

HGTD modules and readout

- 8032 modules to be installed (sensor + chip)
 - Two 15x15 LGAD sensors withd pads of 1.3x1.3 mm^2
 - Bump bonded to two 15x15 ASIC
- Modules arranged in readout staves
- Modules are connected to flex that provides LV, HV and module readout
- Flex cable goes to periphery electronics
- HV brought separately for each module
- CO2 cooling system to keep sensors at -30°C
 - Power consumption constrained by cooling power

Radiation damage torelance

- Maximum fluence 2.5E15 N_{eq}/cm2
- Maximum TID 2 MGy

 (Values are taking into account ~2 safety factor).
- Part of radiation damage is from neutrons, part from charged particles
- Inner and middle rings are substituted at intermediate points in HL-LHC run (3000 fb⁻¹)
 - Inner ring (R < 230 mm) every 1000 fb⁻¹ (3 times)
 - Middle ring (230mm < R < 470 mm) at 2000 fb⁻¹ (once)

LGAD sensors for HGTD

- Low Gain Avalanche Detectors, originally developed in CNM and RD50
- n-p Si detector with an additional p-type doped layer
- High E field. Internal gain (V_{bias}< 800V) > 20 and > 8 after irradiation
- Hit efficiency > 95% at the end of lifetime.

 Several prototypes: CNM (Spain), HPK (Japan), FBK (Italy), IME (China), NDL (China)

LGAD Performance Measurements HPK-P2 IHEP-IMEv2

CNM

M.P. Casado

LGAD Sensors Laboratory Measurements

- Measure LGAD dynamic performance with 90 Sr β .
- Charge and time resolution as a function of V_{bias}.

• Better performance for sensors with C enriched gain layer.

LGAD Sensors Test Beam results

• CNM B-doped Q = 4.2 fC (V=390V, \cdot 6x10¹⁴ n_{eq}/cm²)

- HPK n-irradiated at 1.5x10¹⁵ n_{eq}/cm²
- σ = 36 ps (600 V and for Q coll = 22.8 fC)
 - Tested sensors with Q coll > 4 fC have σ_{time} < 40ps at high V_{bias}

ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)

- Chip for LGAD sensor signal reading
- TSMC CMOS 130nm technology. Total of 225 readout channels (15x15).
- Two protypes of ALTIROC produced and tested:
 - ALTIROC0: 2016
 - Four channels in 2x2 array
 - ALTIROC1: 2018
 - 25 channels in 5x5 array
- Ongoing development:
 - ALTIROC2: 2020-2021
 - 225 channels. All functionalitites of final ASIC.
 - ALTIROC3:
 - Radiation hartd version of ALTIROC2.
- ALTIROC1 with 4 pF input capacitance can achive ~25ps jitter at 4fC input charge

ALTIROC1 measurements in test beam

- Unirradiated ALTIROC1 from HPK and CNM tested at DESY in 2019.
 - Fit of TOA variation as a function of the TOT is used to calculated time-walk corrections

- *t*_{LGAD+ALTIROC} *t*_{Quartz+SiPM}
 Estimated resolution of **46 ps** after time-walk correction and including Landau contribution (25ps). Estimated jitter contribution: **39 ps**.
- In test beam configuration, improved DAQ (with FPGA) should improve jitter resolution by 35% achieving ~25ps target

HGTD physics enhancement

Pileup-jet rejection

1. "Self-tagging": require consistent times for tracks in jet

2. Require jet time consistent with hard-scatter vertex time (t_0)

M.P. Casado

HGTD physics enhancement Lepton isolation

- Electron isolation
 efficiency in Z → ee
 sample as a function of
 pileup vertex density
- HGTD removes majority of pileup deterioration.

HGTD impact on physics studies

Measurement of weak mixing angle

- Precision measurement: determine $sin^2\theta_W$
- HGTD gives 11%
 reduction of total
 experimental uncertainty
- Solid red corresponds to variations of sin²θ_W, dashed blue indicates CT14 NNLO PDF total error, and green is particlelevel AFB prediction.

 $Z \rightarrow ee$ channel,

HGTD impact on physics studies $VBF H \rightarrow invisible$

- Background comes from pileup jets mimicking VBF jets.
- Two components:
 - Central-forward(CF)
 - Forward-forward(FF)
- HGTD can help in both cases, giving improvement of up to S/B gain 10-27%
 27% for additional pile-up rejection of 40%.

Conclusions

- HGTD will play key role in forward region to mitigate pileup effect in HL-LHC environment.
- Sensors and layout are optimized for a per-track resolution 30-50 ps up during detector lifetime.
- Diferent manufacturer LGAD sensors comply with required performance in test beams and laboratory measurements.
- New and powerful capability to contribute to luminosity measurement in ATLAS. Overall goal 1% uncertainty.
- Overall design and construction works in progress. Intense R&D to improve radiation hardness. Installation foreseen in 2026-27.