Tracking for LHCb Run3 - VELO detector construction and the Silicon Upstream Tracker The 30th International Workshop on Vertex Detectors

Igor Kostiuk[†] [†]Nikhef and KINR NASU

on behalf of the LHCb Collaboration

27-09-2021

The Run1 & Run2 (previous) LHCb detector

- Complementary coverage to GPDs
- **Given Softer triggers than GPDs**
- \Box Unique acceptance (2< η <5)
- \Box Vertex resolution ($\sigma_{\tau} \sim 45$ fs for B_{S}^{0})

[JINST3 (2008) S08005]

 \Box Muon ID efficiency ~97% for 1-3% $\pi \rightarrow \mu$ misid \Box Mass resolution (0.5% in $\mu\mu$ for the Y region) **J**et reconstruction:

- energy resolution ~10% (jets with p_{τ} >10 GeV)
- b(c) tagging efficiency $\sim 65\%(25\%)$ ${\color{black}\bullet}$

[Int J Mod Phys A30(2015)1530022]

LHCb Upgrade Run3

• New subdetectors:

- Vertex Locator (VELO)
- Scintillating Fibre Tracker (SciFi)
- Upstream Tracker (UT)
- Hardware level LO:
- Removed for Upgrade Run 3
- GPU-based HLT1 (Allen):
- Starting Upgrade Run 3 [Comp Soft Big Sci (2020) 4 7]

Tracking Upgrade

- Improved reconstruction time which allows for software-only trigger
- \Box Improved p_T resolution
- Improved IP resolution

Overview of LHCb VELO (Vertex Locator) in Run3

Upgraded VELO with pixels

- Improved IP resolution (two times better at $p_T \sim 0.5$ GeV)
- Reduced material interaction (three times better)
- Reduced fake rate and improved pattern recognition

Overview of LHCb VELO (Vertex Locator) in Run3 (ii)

 $\mathbf{1}$

New RF foil

- RF foil is used to separate beam vacuum and VELO vacuum Contributes a lot of material \Box Milled and then etched to 150 μ m (300 μ m planned initially)
- Etched using NaOH

total material: $21.3\% X_0$

Sensors and ASICs

Gilicon sensor 200 μm thick \Box P-type, 8×10¹⁵ 1 MeV n_{eq}/cm² lifetime fluence \Box 768×256 pixels, each 55×55 μ m²

Each sensor has three ASICs Each bump-bonded to 256×256 pixels Readout of every hit: up to 50 khits/s/pixel \Box Power consumption < 2 W

Readout electronics

• ASICs wirebonded to FE hybrids GBTx hybrids deserialize control signals • Opto & Power Board outside vacuum and high radiation zone

Microchannels

□ Four tiles per module (12 ASICs total) \Box Cooled by two-phase CO₂ boiling in microchannels \Box Microchannels are etched in silicon (500 μ m thickness) **D** Power consumption < 2 W

total material: $21.3\% X_0$

Assembly

Construction of the bare module Precise positioning of sensors Innermost sensors have 5mm overhang

Assembly (ii)

Attaching the tiles Attaching the hybrids U Wirebonding Attaching power cables

Interlude: attaching the ASICs

- Choosing the glue. And the hardenerChoosing the pattern
- **Repeatability**
- Avoiding common problems
- Aissing some things!

Stycast 2850FT. 2 components: epoxy and hardener
 Multiple hardener options
 Pattern optimization: coverage, avoiding air bubbles

Interlude: attaching the ASICs. Repeatability and avoiding issues

Reheating to decrystallize
 Decanting to limit the number of reheats
 Centrifuging for deaeration
 Controlling the temperature to account for hardening

Glue flow vs time

Interlude: attaching the sensors. Avoiding issues (almost)

- During QA a detached tile, connected only by wirebonds was found
- Hypothesis: water is a problem
- Possible solutions: avoiding the water (drybox), or removing it with heat
- Accounting for all the water: microchannels, epoxy, hardener
- Heating chosen, controlled by thermal camera
- Thermal cycling, peel and shear tests

Following the long process of R&D work the sensors are attached. Gluebound.

When you think the sensors have gone berserk...

No heat treatment

20 s treatment

60 s treatment

Installation and pre-commisioning

RF box is installed
Modules are being mounted
DAQ and cooling are in progress

Current status and testing

17

Upstream Tracker: overview

- Situated between VELO and dipole magnet
- Comprises four layers of silicon strips (to be compatible with TT)
- Greater performance: coverage, radiation hardness, 40 MHz readout, improved granularity
 Less material

Upstream Tracker: silicon sensors

Sensor	Туре	Pitch, µm	Length, mm	Strips
А	p-in-n	187.5	98	512
В	n-in-p	93.5	98	1024
С	n-in-p	93.5	49	1024
D	n-in-p	93.5	49	1024

Sensor #
888
48
16
16

Four designs to optimize for granularity and cost effectiveness!

Embedded pitch adapters

Circular cutout near the beamline

Upstream Tracker: ASICs

- □ 4192 ASICs with 128 channels each
- □ 130 nm-TSMC with 30 MRad radiation tolerance
- U Wire-bonded to sensors
- Input pitch 80μm
- Allow for 40 MHz readout of UT
- Up to 5 SLVS e-links @ 320 Mbps

G Fast shaping **G**-bit ADC On-chip memory

Upstream Tracker: integration

mounted onto a stave Low-mass support of 1.6 m x 10 cm

Stencil application of TIM, epoxy, silicone pedestal

Modules (hybrids+sensors) and flex cables are

• Overlap between sensors on the front and back

 \Box Integrated titanium pipe for CO₂ cooling

Heat TIM, place module, overnight curing

Another module on the stave!

Upstream Tracker: integration

A huge upgrade is about to conclude: no more hardware trigger, better performance and longer expected lifetime
 VELO and UT persevered through the challenges and are in the final stages of production and installation

Thank you!

