

Development of LGADs and 3D detectors at FBK

paternoster@fbk.eu

WE HUTTER THE

G. Paternoster Fondazione Bruno Kessler, Trento, Italy

Detectors for 4D Tracking in High-Energy Physics

Particle tracking in HEP experiments

- -
	-
- - Timing resolution: *30 ps (rms)*
	- track)
	-
- etc.) [3]:
	- Timing resolution: ~10 ps (rms)
	- High spatial granularity: $~10 \mu m$
	-

- High Luminosity LHC (HL-LHC, operational in 2025) [1,2]: Luminosity: \times 5 compared to LHC \rightarrow 150-200 events per bunch crossing - Timing and spatial resolution of standard silicon tracking sensors not sufficient: *10-15% of vertexes composed of 2 events*

Requirements for silicon timing detectors in HL-LHC: - Low spatial granularity: ~1 mm (timing information assigned to the

Image from: "Development and evaluation of novel, large \blacksquare High radiation hardness: > 1.10^{16/17} $n_{\rm eq}$ cm⁻² area, radiation hard silicon microstrip sensors for the ATLAS ITK experiment at the HL-LHC" Hunter, R.F.H.. (2017)

- High radiation hardness: *> 1·10 ¹⁵ neq ·cm-2*

Real 4D tracking detectors required for future colliders (CLIC, FCC,

Detectors for 4D Tracking in High-Energy Physics

Low Gain Avalanche Diode

3D Detectors

- n⁺⁺/p junction + a p⁺ enrichment region - Low gain $(-10) \rightarrow$ Reduced excess noise factor - Uniform weighting field (large pad area) → homogeneous time response

- **Traditional silicon sensors cannot fulfill some of the requirements:**

- Standard PiN diode sensors (pixels/microstrips): limited timing resolution (~200 ps)
- APDs: excessive shot noise

- **LGAD detectors:**

-
-
-

- Reduced thickness (50 μ m) \rightarrow Increase slew rate of the signal
- Uniform weighting field (large pad area) \rightarrow homogeneous time response
- Saturated drift velocity (Efield > 30 kV·cm-1) \rightarrow Reduce jitter

N. Cartiglia

LGAD Fabrication Technology

- Fabricated on 6 inches **Wafers**
- Custom CMOS-like **Technology**
- Fabricated in the FBK internal facility (ISO 9001:2015 certified)

ID DEVICES

LGAD – Radiation hardness

Problem: Radiation level de-activate the dopant of the gain layer, reducing the effective gain after irradiation **(Initial Acceptor Removal Effect)** [M. Moll, Vertex 2019]

> • Gain is completely lost after 1e15 neq/cm² • It is possible to partially compensate the gain-loss by increasing the bias voltage

• After irradiation the Gain of LGADs id

• We demonstrated that the inclusion of some chemical impurities (like Carbon) in the silicon lattice is effective in mitigating

LGAD – Radiation hardness

$$
\frac{N_B(\emptyset)}{N_B(0)} = e^{-c\emptyset} \quad c(N_B) = \frac{N_{Si} * \sigma_{Si} * D_2}{k_{param.} * N_B(0)}
$$

Acceptor removal parametrization (M. Ferrero and N. Cartiglia)

Acceptor Removal parametrization - neutrons

Carbon co-implantation Optimization

- Carbon Dose
- Boron Implantation (PGAIN) Depth
- Boron/Carbon Activation and **Diffusion**
- Boron Profile and peak concentration

1.00E+17

• Carbon co-implantation allows to reach an exceptional time resolution $($ \sim 30 ps) after irradiation (2.5e15 cm-2 neq) using about 300 Volts less wrt not carbonated samples.

20

10

 $\overline{0}$

40

time

LGAD – Radiation hardness

[Ryan Heller, 38th RD50 Workshop] 38th RD50 Workshop]

- There is an evidence for death of highly irradiated LGADs at test beam
- Probably due to a rare, large ionization events producing large current in narrow path
- Mortality is function of sensor thickness and voltage only (Gain is not necessary for death mechanism)
- Fatal voltage: > 600V for 50 um Sensors
- Carbon co-implantation (lower operative bias) or using thicker substrates reduce the sensor mortality

LGAD Mortality during Test Beam

LGAD – Fine segmentation (TI-LGAD)

Segmented Standard LGAD

LGADs pixels have limited Fill Factor

- No-gain region at the pixel border due to isolation and termination structures:
	- Dimensions defined by technological and physical constraint
	- Dead distance for charge multiplication ~ 40- 80 μm

Experimental measurement of LGAD fill-factor using a micro-focused x-ray beam (3 μm, 20 keV) at Swiss Light Source at PSI [5]: LGAD micro-strip (146 μm pitch, older UFSD technology) - Spectrum mean energy as a function of beam position crossing 3 strips

- Nominal FF: 80 μm (55%)
- Measured FF: ~60 μm (40%)

New **TI-LGAD** technology proposed by FBK:

- **JTE and p-stop are replaced by a single trench.**
- Trenches act as a drift/diffusion barrier for electrons and isolate the pixels.
	- The trenches are a few microns deep and < 1um wide.
	- Filled with Silicon Oxide
	- The fabrication process of trenches is compatible with the standard LGAD process flow.

LGAD – Fine segmentation (TI-LGAD)

New RD50 Batch

SEM images after trench etching

LGAD – Fine segmentation (TI-LGAD)

- IV curves show expected behaviour of TI-LGADs
- and PiN diodes.
- TI-LGADs: Gain\knee" 25 V / Breakdown > 250
- ! LGAD breakdown is due to gain layer

LGAD – Fine segmentation (TI-LGAD)

Inter-pad characterization

Interpixel distance in the range 3-10 um (depending on the layout split) x10 times lower wrt standard LGAD

LGAD – Fine segmentation (RSD)

Main Technological Features

- Not-segmented p-gain implant
- Resistive n+ implant
- AC Metal pads
- Segmentation of the AC pads defines the pitch
- Thin coupling dielectric layer under yhe AC pads

The signal spreads on several pads, with **amplitude inversely proportional to the hit distance Note:** the amplitudes on far away pads is much larger than what is predicted by direct induction

LGAD – Fine segmentation (RSD)

The position of the hit is obtained as: (amplitude>10 mV)

100um pitch Array:

x resolution: 6 um, with an offset of 1 um

N. Cartiglia

A. Sadrozinski

Space Resolution Time Resolution

3D Detectors

3D Detectors

S. Parker et. al. NIMA 395 (1997) 328

Drift distance (L) and active substrate thickness (D) are decoupled → **L<<D by layout**

ADVANTAGES:

• Non uniform spatial response (electrodes and low field regions) • Higher capacitance with respect to planar (\sim 3-5x for \sim 200 mm thickness) • Complicated technology (cost, yield)

- Low depletion voltage (low power diss.)
- Short charge collection distance:
	- Fast response rise
	- Less trapping probability after irr. -> **high radiation hardness**
- Lateral drift \rightarrow cell "shielding" effect:
	- Lower charge sharing

DISADVANTAGES:

-
-
-
-

- D = 230 um, $L \sim u7$ mm, column diam. $~12$ um
- Excellent performance up to $5x10^{15}$ n_{eq} cm⁻² also pushed to ~1.4x10¹⁶ n_{eq} cm-2 in AFP tests
- Thinner sensors (100-150 µm),
- Narrower electrodes 5 µm
-

FBK will be one of the lab involved in the realization of 3D Si for HL LHC ATLAS ITK [*Lapertosa @ TREDI2021]*

• reduced inter-electrode spacing (~30 µm)

3D Detectors Technology

New single-side 3D technology/design for HL-LHC

- Mask aligner is not accurate enough for the «25 x 100 2E» layout
- Stepper allows for more aggressive layout rules and preserves critical details

e) 25 x 100 – 2E (H-ear)

p + column

Bump pad

n + column

Stepper

- 3D sensors are also expected to be fast …
- But layouts with columnar electrodes have non uniform electric and weighting field distributions \rightarrow go for trenches

3D Detectors for timing

[G.F. Dalla Betta ANNIMA2021]

3D Detectors for timing

Beam test @ PSI (10/2019)

Time resolution of 3D-trench silicon pixels with MIPs (testbeam & lab) at room temperature

(*Intrinsic time resolution of 3D-trench silicon pixels for charged particle detection*, 2020 JINST 15 P09029)

(after correction for MCP contribution) confirmed in corresponding laboratory measurements (with ⁹⁰Sr source)

Conclusions

- In the last years FBK developed two technologies of silicon detectors for 4Dtracking with concurrent time and spatial resolution: LGAD and 3D
- Last developments in LGAD lead to time resolution ~30ps up to fluences of 2.5e15 neq, mainly thanks to the using of thin substrates and initial acceptor removal mitigation
- New developments for fine-segmented LGADs are ongoing: RSD and TI-LGADs providing high FF and high spatial resolution
- Latest developments on 3D detectors allowed to improve the technology (minimum CD & yield)
- 3D detectors shown an intrinsic high radiation resistance up to 1e16 neq
- 3D detectors for timing have been developed in TimeSpot project, time resolution down to 20ps has been demonstrated

Thank you for your attention

paternoster@fbk.eu

Acknowledgements

- Part of the work has been performed in the framework of RD50
- Some batches have been produced in the framework of convenzione INFN/FBK
- Horizon 2020, grant UFSD669529
- Progetto PRIN2017, MIUR, 4DInSide, Prin2017
- Progetto FARE, MIUR, R165xr8frt_fare
- Dipartimenti di Eccellenza, Torino Physics Dep. (ex L. 232/2016, art. 1, cc. 314, 337)