

Development of LGADs and 3D detectors at FBK

G. Paternoster Fondazione Bruno Kessler, Trento, Italy

paternoster@fbk.eu

Detectors for 4D Tracking in High-Energy Physics

Image from: "Development and evaluation of novel, large area, radiation hard silicon microstrip sensors for the ATLAS ITK experiment at the HL-LHC" Hunter, R.F.H. (2017)

Particle tracking in HEP experiments

- - Timing resolution: 30 ps (rms)
 - track)
- etc.) [3]:
 - Timing resolution: ~10 ps (rms)
 - High spatial granularity: ~10 µm

- High Luminosity LHC (HL-LHC, operational in 2025) [1,2]: Luminosity: $\times 5$ compared to LHC \rightarrow 150-200 events per bunch crossing Timing and spatial resolution of standard silicon tracking sensors not sufficient: 10-15% of vertexes composed of 2 events

Requirements for silicon timing detectors in HL-LHC: - Low spatial granularity: ~1 mm (timing information assigned to the

High radiation hardness: > $1 \cdot 10^{15} n_{eq} \cdot cm^{-2}$

Real 4D tracking detectors required for future colliders (CLIC, FCC,

```
High radiation hardness: > 1 \cdot 10^{16/17} n_{eq} \cdot cm^{-2}
```

Detectors for 4D Tracking in High-Energy Physics

Low Gain Avalanche Diode

3D Detectors

Traditional silicon sensors cannot fulfill some of the requirements:

- Standard PiN diode sensors (pixels/microstrips): limited timing resolution (~200 ps)
- APDs: excessive shot noise

- LGAD detectors:

- n^{++}/p junction + a p⁺ enrichment region - Low gain (~10) \rightarrow Reduced excess noise factor - Uniform weighting field (large pad area) \rightarrow homogeneous time response

- Reduced thickness (50 μ m) \rightarrow Increase slew rate of the signal
- Uniform weighting field (large pad area) \rightarrow homogeneous time response
- Saturated drift velocity (Efield > 30 kV·cm-1) \rightarrow **Reduce** jitter

The 30° international workshop on VERTEX detectors

6

LGAD Fabrication Technology

- Fabricated on 6 inches Wafers
- Custom CMOS-like Technology
- Fabricated in the FBK \bullet internal facility (ISO 9001:2015 certified)

ID DEVICES

LGAD – Radiation hardness

Problem: Radiation level de-activate the dopant of the gain layer, reducing the effective gain after irradiation (Initial Acceptor Removal Effect) [M. Moll, Vertex 2019]

• After irradiation the Gain of LGADs id

Gain is completely lost after 1e15 neq/cm²
It is possible to partially compensate the gain-loss by increasing the bias voltage

 We demonstrated that the inclusion of some chemical impurities (like Carbon) in the silicon lattice is effective in mitigating

LGAD – Radiation hardness

Acceptor removal parametrization (M. Ferrero and N. Cartiglia)

Acceptor Removal parametrization - neutrons

$$\frac{N_B(\emptyset)}{N_B(0)} = e^{-c\emptyset} \quad c(N_B) = \frac{N_{Si} * \sigma_{Si} * D_2}{k_{param.} * N_B(0)}$$

Carbon co-implantation Optimization

- Carbon Dose
- Boron Implantation (PGAIN) Depth
- Boron/Carbon Activation and Diffusion
- Boron Profile and peak concentration

1.00E+17

Carbon co-implantation allows to reach an • exceptional time resolution (~ 30 ps) after irradiation (2.5e15 cm-2 neq) using about 300 Volts less wrt not carbonated samples.

20

10

0

40

time

LGAD – Radiation hardness

LGAD Mortality during Test Beam

- There is an evidence for death of highly irradiated LGADs at test beam
- Probably due to a rare, large ionization events producing large current in narrow path
- Mortality is function of sensor thickness and ulletvoltage only (Gain is not necessary for death mechanism)
- Fatal voltage: > 600V for 50 um Sensors
- Carbon co-implantation (lower operative bias) or using thicker substrates reduce the sensor mortality

[Ryan Heller, 38th RD50 Workshop] 38th RD50 Workshop]

Segmented Standard LGAD

LGADs pixels have limited Fill Factor

- No-gain region at the pixel border due to isolation and termination structures:
 - Dimensions defined by technological and physical constraint
 - Dead distance for charge multiplication ~ 40- 80 µm

Experimental measurement of LGAD fill-factor using a micro-focused x-ray beam (3 µm, 20 keV) at Swiss Light Source at PSI [5]:
LGAD micro-strip (146 µm pitch, older UFSD technology)
Spectrum mean energy as a function of beam position crossing 3 strips

- Nominal FF: 80 µm (55%)
- Measured FF: ~60 µm (40%)

New **TI-LGAD** technology proposed by FBK:

- JTE and p-stop are replaced by a single trench.
- Trenches act as a drift/diffusion barrier for electrons and isolate the pixels.
 - The trenches are a few microns deep and < 1um wide.
 - Filled with Silicon Oxide
 - The fabrication process of trenches is compatible with the standard LGAD process flow.

New RD50 Batch

SEM images after trench etching

- IV curves show expected behaviour of TI-LGADs
- and PiN diodes. lacksquare
- TI-LGADs: Gain\knee" 25 V / Breakdown > 250
- ! LGAD breakdown is due to gain layer

Inter-pad characterization

Interpixel distance in the range 3-10 um (depending on the layout split) x10 times lower wrt standard LGAD

LGAD – Fine segmentation (RSD)

Main Technological Features

- Not-segmented p-gain implant
- Resistive n+ implant
- AC Metal pads
- Segmentation of the AC pads defines the pitch
- Thin coupling dielectric layer under yhe AC pads

The signal spreads on several pads, with **amplitude** inversely proportional to the hit distance **Note:** the amplitudes on far away pads is much larger than what is predicted by direct induction

LGAD – Fine segmentation (RSD)

Space Resolution

The position of the hit is obtained as: (amplitude>10 mV)

100um pitch Array:

x resolution: 6 um, with an offset of 1 um

N. Cartiglia

PITCH	x resolution [um]	Y resolution [um]
100 um	4-6	4-6
200 um	6	6
500 um	19	18

Time Resolution

3D Detectors

3D Detectors

S. Parker et. al. NIMA 395 (1997) 328

ADVANTAGES:

- Low depletion voltage (low power diss.)
- Short charge collection distance:
 - Fast response rise
 - Less trapping probability after irr. -> high radiation hardness
- Lateral drift \rightarrow cell "shielding" effect:
 - Lower charge sharing

Drift distance (L) and active substrate thickness (D) are decoupled \rightarrow L<<D by layout

DISADVANTAGES:

 Non uniform spatial response (electrodes and low field regions) • Higher capacitance with respect to planar (~3-5x for ~ 200 mm thickness) Complicated technology (cost, yield)

- $D = 230 \text{ um}, L \sim u7 \text{ mm}, \text{ column diam}.$ • ~12 um
- Excellent performance up to 5x10¹⁵ ullet n_{eq} cm⁻² also pushed to ~1.4x10¹⁶ n_{eq} cm⁻² in AFP tests

- Thinner sensors (100-150 µm),
- Narrower electrodes 5 µm

FBK will be one of the lab involved in the realization of 3D Si for HL LHC ATLAS ITK [Lapertosa @ TREDI2021]

reduced inter-electrode spacing (~30 µm)

3D Detectors Technology

New single-side 3D technology/design for HL-LHC

- Mask aligner is not accurate enough for the «25 x 100 2E» layout
- Stepper allows for more aggressive layout rules and preserves critical details

e) 25 x 100 – 2E (H-ear)

p⁺ column

n⁺ column

Bump pad

Batch	Yield on full RD53A sensors (%)		
	50×50-1E	25×100-1E	25×100-2E
Mask Aligner	64±23	60±31	19±14
Stepper	58±15	63±18	38±20

Stepper

3D Detectors for timing

- 3D sensors are also expected to be fast ... •
- But layouts with columnar electrodes have non uniform electric and weighting field distributions \rightarrow go for trenches

[G.F. Dalla Betta ANNIMA2021]

3D Detectors for timing

Time resolution of 3D-trench silicon pixels with MIPs (testbeam & lab) at room temperature

(Intrinsic time resolution of 3D-trench silicon pixels for charged particle detection, 2020 JINST 15 P09029)

Beam test @ PSI (10/2019)

(after correction for MCP contribution) confirmed in corresponding laboratory measurements (with ⁹⁰Sr source)

Conclusions

- In the last years FBK developed two technologies of silicon detectors for 4Dullettracking with concurrent time and spatial resolution: LGAD and 3D
- Last developments in LGAD lead to time resolution ~30ps up to fluences of • 2.5e15 neq, mainly thanks to the using of thin substrates and initial acceptor removal mitigation
- New developments for fine-segmented LGADs are ongoing: RSD and TI-• LGADs providing high FF and high spatial resolution
- Latest developments on 3D detectors allowed to improve the technology ullet(minimum CD & yield)
- 3D detectors shown an intrinsic high radiation resistance up to 1e16 neq •
- 3D detectors for timing have been developed in TimeSpot project, time resolution down to 20ps has been demonstrated

Thank you for your attention

Acknowledgements

- Part of the work has been performed in the framework of **RD50**
- Some batches have been produced in the framework of convenzione INFN/FBK
- Horizon 2020, grant UFSD669529
- Progetto PRIN2017, MIUR, 4DInSide, Prin2017
- Progetto FARE, MIUR, R165xr8frt_fare
- Dipartimenti di Eccellenza, Torino Physics Dep. (ex L. 232/2016, art. 1, cc. 314, 337)

paternoster@fbk.eu