A collection of results for level 3

Valerio Bertone¹ and Giuseppe Bozzi²

¹IRFU, CEA, Université Paris-Saclay, ²INFN and Università di Pavia

LHC EW WG Subgroup Meeting

June 17, 2021

Matching with fixed order

• We implement the additive matching, i.e., :

$$\frac{d\sigma}{dq_T} = \left[\frac{d\sigma^{res.}}{dq_T}\right] + \left[\frac{d\sigma}{dq_T}\right]_{f.o.} - \left[\frac{d\sigma^{res}}{dq_T}\right]_{f.o.}$$

Expansion of resummed calculation:

$$\left[rac{d\sigma^{ ext{res.}}}{dq_T}
ight]_{ ext{f.o.}} = \sum_{n=0}^{ ext{f.o.}} lpha_s^n \sum_{l=0}^{2n} B^{(n,l)} I_l \left(q_T
ight)$$

$$I_l(q_T) = \int_0^\infty db \, b J_0(bq_T) \ln^l\left(rac{b^2Q^2}{b_0^2}(+1)
ight)$$

- $I_0 \propto \delta(q_T)$ irrelevant here
- The +1 defines the modified logarithms:
 - originally introduced to guarantee "unitarity"
 - gives raise to power corrections $O(q_T/Q)$ that do not spoil the cancellation at low q_T between fixed order and expansion of the resummation.

Nominal logs

Modified logs

Nominal logs

Modified logs

Matching uncertainties

- Eventually, resummation has to be switched off

with $f(q_T, Q) \to 0$ at high q_T to recover the pure f.o. result

matching uncertainties (currently working on that and on N3LL')

$$rac{d\sigma}{dq_T} \propto H(M_{\ell\ell},\mu_R)$$
 : Hard factor $imes \exp{[S_{ ext{PT+NP}}(\mu_R,\mu_b)]}$: Evolution

$$\times$$
 $C_{1,2}(\mu_b)f_{\mathrm{NP}}^{(1,2)}(\mu_b)$: Matching onto collinear

$$imes \underbrace{\Gamma^{\mathrm{DGLAP}}_{1,2}(\mu_b,\mu_F)f_1(\mu_F)f_2(\mu_F)}_{f_1(\mu_b)f_2(\mu_b)}$$
: Collinear PDFs

- Theoretical uncertainty estimate on **N³LL**:
 - variations of μ_R by a factor 2 up and down w.r.t. M_{ll} ,
 - variations of $\mu_{\rm F}$ by a factor 2 up and down w.r.t. M_{ll} ,
 - estimate of subleading logarithmic corrections by including N⁴LL corrections in the Sudakov (mimicking resummation scale variations),

[G. Das, S.-O. Moch, A. Vogt, arXiv:1912.12920]

inclusion of non-perturbative effects as determined in the **PV19** fit.

[A. Bacchetta et al., arXiv:1912.07550]

 \bullet N⁴LL corrections to the Sudakov: [G. Das, S.-O. Moch, A. Vogt, arXiv:1912.12920]

$$A_5 = (1.7 \pm 0.5, 1.1 \pm 0.5, 0.7 \pm 0.5) \cdot 10^5 \text{ for } n_f = 3, 4, 5.$$

$$B_4^{\text{DIS}} \Big|_{\text{appr}} = (10.68 \pm 0.01) \cdot 10^4 + (-2.025 \pm 0.032) \cdot 10^4 \, n_f + 798.0698 \, n_f^2 - 12.08488 \, n_f^3$$

- we used the configuration that gave the largest difference w.r.t. N³LL (and finally multiplied it by two both in the plus and minus directions).
- Non-perturbative corrections determined by a fit to data at N³LL (PV19):

 [A. Bacchetta et al., arXiv:1912.07550]
 - Parameterisation used:

$$f_{ ext{NP}}(x,\mu_b) \exp\left[S_{ ext{NP}}(Q,\mu_b)
ight] \;\; = \;\; \left[rac{1-\lambda}{1+g_1(x)rac{b^2}{4}} + \lambda \exp\left(-g_{1B}(x)rac{b^2}{4}
ight)
ight]$$

$$imes \exp\left[-\left(g_2+g_{2B}b^2
ight)\ln\left(rac{Q^2}{Q_0^2}
ight)rac{b^2}{4}
ight]$$

with:

$$g_1(x) = rac{N_1}{x\sigma} \exp\left[-rac{1}{2\sigma^2} \ln^2\left(rac{x}{lpha}
ight)
ight] \qquad g_{1B}(x) = rac{N_{1B}}{x\sigma_B} \exp\left[-rac{1}{2\sigma_B^2} \ln^2\left(rac{x}{lpha_B}
ight)
ight]$$

Backup slides

TMD evolution equations

TMD factorisation allows one to obtain the evolution equations:

$$\begin{cases} \frac{d \ln F}{d \ln \mu} = \gamma(\mu, \zeta) \\ \frac{d \ln F}{d \ln \sqrt{\zeta}} = K(\mu) \end{cases}, \quad \frac{d^2 \ln F}{d \ln \mu d \ln \sqrt{\zeta}} = \begin{cases} \frac{d \gamma}{d \ln \sqrt{\zeta}} \\ \frac{d K}{d \ln \mu} \end{cases} = \gamma_K(\alpha_s(\mu))$$

- To solve these equations we need to fix two pairs of (i.e. four) scales:
 - initial scales: (μ_0, ζ_0)
 - final scales: (μ, ζ)
- The solution is **unique** and reads:

$$F(\mu, \zeta) = R\left[\left(\mu, \zeta\right) \leftarrow \left(\mu_0, \zeta_0\right)\right] F(\mu_0, \zeta_0)$$

$$R\left[\left(\mu,\zeta\right)\leftarrow\left(\mu_{0},\zeta_{0}\right)\right]=\exp\left\{K(\mu_{0})\ln\frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}+\int_{\mu_{0}}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_{F}(\alpha_{s}(\mu'))-\gamma_{K}(\alpha_{s}(\mu'))\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\}$$

• The question is: how do we choose these four scales?

Scale variations

- A sensible choice of the scales is important to allow perturbation theory to be reliable:
 - no large unresummed logarithms should be introduced,
 - each scale has to be set in the vicinity of its natural (central) value,
 - scale variations (within a reasonable range) give an estimate of HO corrs.
- In TMD factorisation $(q_T \ll Q)$ for DY the relevant scales are q_T and Q:
 - ullet natural to expect $\mu_0 \sim \sqrt{\zeta_0} \sim q_T \sim b_T^{-1}$ and $\mu \sim \sqrt{\zeta} \sim Q$
- In fact, it turns out that (in the MS scheme) the central scales are:

$$\mu_0 = \sqrt{\zeta_0} = rac{2e^{-\gamma_E}}{b_T} \equiv \mu_b \quad ext{and} \quad \mu = \sqrt{\zeta} = Q$$

This choice **nullifies** all unresummed logs. One should thus consider:

$$\mu_0 = C_i^{(1)} \mu_b, \quad \sqrt{\zeta_0} = C_i^{(2)} \mu_b, \quad \mu = C_f^{(1)} Q, \quad \sqrt{\zeta} = C_i^{(2)} Q,$$

Scale variations

 \bullet To reason why variations of ζ have **no effect** is that:

$$rac{d\sigma}{dq_T} \propto H\left(rac{\mu}{Q}
ight) F_1(\mu, \zeta_1) F_2(\mu, \zeta_2) \quad ext{with} \quad \boxed{\zeta_1 \zeta_2 \stackrel{!}{=} Q^4}$$

• It is easy to see that:

$$F_1(\mu, \zeta_1) F_2(\mu, \zeta_2) = \underbrace{R\left[(\mu, \zeta_1) \leftarrow (\mu_0, \zeta_0)\right] R\left[(\mu, \zeta_2) \leftarrow (\mu_0, \zeta_0)\right]}_{f(\zeta_1 \zeta_2) = f(Q^4)} F_1(\mu_0, \zeta_0) F_2(\mu_0, \zeta_0)$$

- The single dependence on ζ_1 and ζ_2 drops in the combination:
 - we choose $\zeta_1 = \zeta_2 = Q^2$ but any other choice such that $\zeta_1 \zeta_2 = Q^4$ is **identical**.
- In addition, in NangaParbat we have chosen to set $\mu_0 = \sqrt{\zeta_0}$:
 - not strictly necessary but probably a conservative choice.
- At the end of the day, we have **two scales** to be varied:

$$\mu_0 = \sqrt{\zeta_0} = C_i \mu_b$$
 and $\mu = C_f Q$

Comparison to qT resummation

• In q_T resummation, the **resummation scale** M is introduced as:

$$L = \ln\left(rac{Q}{\mu_b}
ight) = \ln\left(rac{M}{\mu_b}
ight) + \ln\left(rac{Q}{M}
ight)$$

These logs are **exposed** by expressing integral representations of the argument of the Sudakov in terms of the **functions** g_n :

$$\int_{\mu_b}^{Q} \frac{d\mu'}{\mu'} \left[A(\alpha_s(\mu')) \ln \left(\frac{Q}{\mu'} \right) + B(\alpha_s(\mu')) \right] = Lg_0(\alpha_s L) + \sum_{n=1}^{\infty} \alpha_s^{n-1} g_n(\alpha_s L)$$

$$= Lg_0(\alpha_s L) + \sum_{n=1}^k \alpha_s^{n-1} g_n(\alpha_s L) + \mathcal{O}(\alpha_s^{k+n} L^n)$$

- The series in the r.h.s. is **truncated** according to the log accuracy:
 - \bullet the truncation is responsible for the **explicit dependence on** M.
- \bullet If the l.h.s. integral is computed exactly, no dependence on M appears:
 - this is what we do in NangaParbat by computing the integral numerically,
 - therefore, we have **no resummation scale dependence**.

Comparison to qT resummation

- The **renormalisation scale** μ_R in q_T resummation is probably to be (partly) identified with the scale μ in the TMD formalism:
 - this is the large scale at which the strong coupling α_s is computed.
- The **factorisation scale** μ_F present in q_T resummation is absent in the TMD formalism:
 - in the TMD approach, PDFs are computed at the low scale μ_0 :
 - \bullet μ_0 is varied around μ_b ,
 - in q_T resummation, PDFs are evolved from exactly μ_b up to μ_F :
 - \bullet μ_F is varied around Q.
 - variations of μ_0 are typically much larger than variations of μ_F because at the energies relevant to the benchmark $\alpha_s(\mu_0) \gg \alpha_s(\mu_F)$:
 - problems with NangaParbat in using a b_{max} too large with scale variations.