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Matching with fixed order

@ We implement the additive matching, 1.e., :
do  |dc™" N do |  do"
dQT i dQT _ _dQT_f.a | dQT 1to.

&

Expansion of resummed calculation:

dores: f.o. 2n
{ } =) ar) B (qr)
f.o. 1—0

qu n=0

har) = [ dbbIo(bar) (b2Q2< )

b5

@ Io x 6(gp) irrelevant here

&

The +1 defines the modified logarithms:

@ originally introduced to guarantee “unitarity”

@ gives raise to power corrections O(grt/ Q) that do not spoil the cancellation at
low gt between fixed order and expansion of the resummation.
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Nominal logs
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Modified 1
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Matching uncertainties

@ Lventually, resummation has to be switched oft

i dgres. ] i dO.res. ]

- dqr ,_dQT_

@® Damping function —>

a7, Q)

with f(g, Q) — 0 at high g, to recover the pure t.0. result

@ matching uncertainties (currently working on that and on N3LI1.)



Estimate of uncertainties

do
—— o H(Mpyg, pr) : Hard factor
dqr
X exp [SPT-|-NP ([,LR, [Lb)] . Evolution
X C1,2(pp) flglf’,z) (ptp) : Matching onto collinear

\ _J/

X I‘?E’LAP (o 107) f1(per) f2(per) @ Collinear PDF's

f1(me)f2(1s)
@ lheoretical uncertainty estimate on N3LL:

@ variations of ur by a factor 2 up and down w.r.t. My,
@ variations of xr by a factor 2 up and down w.r.t. My,

@ estimate of subleading logarithmic corrections by including N*LL corrections
in the Sudakov (mimicking )s

&

inclusion of non-perturbative effects as determined in the PV19 fit.



Estimate of uncertainties

i

@ N<LL corrections to the Sudakov:

As = (1.7+£ 05, 1.1 £ 0.5, 0.7 £ 0.5) - 10> for n; = 3,4,5.

Bl = (10.68 £0.01) - 10* + (—2.025 + 0.032) - 10" o 4 798.0698 n{ —12.08488 n}

appr

-

@ we used the configuration that gave the largest difterence w.r.t. N3LL (and finally
multiplied 1t by two both 1n the plus and minus directions).

@ Non-perturbative corrections determined by a fit to data at N3LL (PV19):

@ Parameterisation used:

1) b*\
e (z, o) exp [Sne(Q, up)] = 1+ gy (w)ﬁ - Aexp (_ng(w)Z>
i 4

2 b2
X exp [— (g2 + g2Bb7) In (gg) . ]

@ with:

o= D[t (2)] o) e[ (2)

2072 o Top o3




Estimate of uncertainties
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Estimate of uncertainties
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Estimate of uncertainties
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Backup slides



TMD evolution equations

@ ['MD tfactorisation allows one to obtain the evolution equations:

din F d~y

ding 0 #mF | dinvG o
dnF _ " dlnpdinC ) ogx "
din+/¢ (1) dln p

&

To solve these equations we need to fix two pairs of (i.e. four) scales:
@ initial scales: (g, (o)
@ final scales: (lL, C)

@ The solution 1s unique and reads:

F([L, C) — R[(Na C) AR (/1’0760)] F(”DaCO)

R [('u’ C) N (HO, CO)] — €Xp {K(H’O) In \/\/CE() + /,:: dlil,,, 'YF(Oés(l*l’,)) T 7K(as(ll’,)) In \I«/le:| }

@ lhe question 1s: how do we choose these four scales?



Scale variations

@ A sensible choice of the scales 1s important to allow perturbation
theory to be reliable:

s

@ no large unresummed logarithms should be introduced,

f—3

@ cach scale has to be set in the vicinity of its natural (central) value,

=3

@ scale variations (within a reasonable range) give an estimate of HO corrs.

ga»

@ In TMD factorisation (gt < Q) for DY the relevant scales are gr and Q:
@ natural to expect (g CO ~ T b;l and (o ~ C ~ Q

@ In fact, 1t turns out that (in the MS scheme) the central scales are:

26—’7E
po = /Co = b =pup and p=+/¢(=Q

@ This choice nullifies all unresummed logs. One should thus consider:

po = C P po,  VCo=CPpy, 1= C}”Q, V<2 Q,



Scale variations

@ To reason why variations of ¢ have no effect is that:

d !
é x H (%) F1(py C1)F2(py C2)  with

@ Itis easy to see that:
Fy (1, C1) F2 (11, C2) = R [(115 C1) <= (105 Co)] B [(11, C2) <= (105 Co)] F1 (105 Co) F2 (1o, Co)

F(Gi62) = £(@Q
@ The single dependence on {1 and &> drops in the combination:

@ we choose {1 = &2 = Q2 but any other choice such that {152 = Q4 is identical.

@ In addition, in NangaParbat we have chosen to set po = Vo

@ not strictly necessary but probably a conservative choice.

@ At the end of the day, we have two scales to be varied:




Comparison to gr resummation

@ In gr resummation, the resummation scale M 1s introduced as:

() () (5

@ These logs are exposed by expressing integral representations of the
argument of the Sudakov in terms of the functions gu:

W A (D) + Bww)| = Lo + Y ar (e

n=1

Hb

k
= Lgo(asL) + Z oy tgn(asL) + O(aftmL™)

n=1

@ The series in the r.h.s. 1s truncated according to the log accuracy:
@ the truncation 1s responsible for the explicit dependence on M.

@ If the Lh.s. integral 1s computed exactly, no dependence on M appears:

@ thisis what we do 1n NangaParbat by computing the integral numerically,

-

@ therefore, we have no resummation scale dependence.



Comparison to gr resummation

@ The renormalisation scale yr in gr resummation 1s probably to be

(partly) identified with the scale # 1n the TMD formalism:
@ this 1s the large scale at which the strong coupling @ 1s computed.

@ The factorisation scale yrpresent in gr resummation 1s absent in the

TMD formalism:

-

@ 1n the TMD approach, PDFs are computed at the low scale p:
@ o 1s varied around i,
@ 1n gr resummation, PDFs are evolved from exactly pp up to pr:

@ pur s varied around Q.

@ variations of #¢ are typically much larger than variations of gr because at
the energies relevant to the benchmark as(p0) > as(ur):

-

@ problems with NangaParbat in using a bmax too large with scale variations.



