Some thoughts on theory uncertainties

A. Freitas

University of Pittsburgh

On Z resonance (leading pole term):

$$A_{4} = \frac{\sum_{q} X_{q} \, 8 \frac{v_{\ell}}{a_{\ell}} \frac{v_{q}}{a_{q}}}{\sum_{q} X_{q} \left(1 + \frac{v_{\ell}^{2}}{a_{\ell}^{2}}\right) \left(1 + \frac{v_{q}^{2}}{a_{q}^{2}}\right)} \quad X_{q} = f_{q}(x_{1}) f_{\bar{q}}(x_{2}) + f_{\bar{q}}(x_{1}) f_{q}(x_{2})$$

$$\frac{v_\ell}{a_\ell} = 1 - 4s_\ell^2, \qquad \qquad s_\ell^2 \equiv \sin^2 \theta_{\mathsf{eff}}^\ell$$

$$\frac{v_q}{a_q} = 1 - 4|e_q|(s_\ell^2 + \Delta_q)$$

$$\Delta_q = \underbrace{\Delta_{q(1)}}_{\text{implemented missing}} + \underbrace{\Delta_{q(2)}}_{\text{missing}}$$

$$\frac{\delta A_4}{A_4} \approx \frac{\sum_q X_q \left(-4|e_q|\Delta_{q(2)}\right)}{\sum_q X_q \left(1-4|e_q|s_\ell^2\right)} + \frac{\sum_q X_q 8|e_q| \left(1-4|e_q|s_\ell^2\right)\Delta_{q(2)}}{\sum_q X_q \left[1+(1-4|e_q|s_\ell^2)^2\right]}$$

 $\Delta_{q(2)}$ is known (in SM) for leading Z pole term

Freitas '14

Dubovyuk, Freitas, Gluza, Riemann, Usovitsch '19

Example contributions to $\Delta_{q(1)}$:

Example contributions to $\Delta_{q(2)}$:

Z-pole 2-loop flavor dependence:

Assume: no EW 2-loop corrections included in analysis (i.e. they are theory unc.)

Schemes:

- α' : Use α, M_W, M_Z as inputs, perturb. exp. in α
- α : Use α, G_{μ}, M_{Z} as inputs, perturb. exp. in α
- G_{μ} : Use $G_{\mu}, M_{\mathsf{W}}, M_{\mathsf{Z}}$ as inputs, perturb. exp. in G_{μ}

Scheme:	α'	α	G_{μ}
$\Delta_{u(\alpha^2)}[10^{-5}]$	-1.74	-1.82	-1.45
$\Delta_{d(\alpha^2)} [10^{-5}]$	-1.49	-1.67	-0.88

Inputs: $M_{\rm Z}=91.1876~{\rm GeV},~M_{\rm W}=80.385~{\rm GeV},~M_{\rm H}=125.7~{\rm GeV}$ $m_{\rm t}=173.5~{\rm GeV},~\Delta\alpha=0.059,~\alpha_{\rm s}=0.1184,~G_{\mu}=1.16638\times 10^{-5}~{\rm GeV}^{-2}$

Z-pole 2-loop flavor dependence:

Assume: no EW 2-loop corrections included in analysis (i.e. they are theory unc.)

Schemes:

- α' : Use α, M_W, M_Z as inputs, perturb. exp. in α
- α : Use α, G_{μ}, M_{Z} as inputs, perturb. exp. in α
- G_{μ} : Use $G_{\mu}, M_{\mathsf{W}}, M_{\mathsf{Z}}$ as inputs, perturb. exp. in G_{μ}

Scheme:	α'	α	G_{μ}
$\Delta_{u(\alpha^2)}[10^{-5}]$	-1.74	-1.82	-1.45
$\Delta_{d(\alpha^2)} [10^{-5}]$	-1.49	-1.67	-0.88

including non-factorizable EW×QCD corrections:

$$\Delta_{u(\alpha^2+\alpha\alpha_s)}[10^{-5}]$$
 +1.47 +1.38 +1.74
 $\Delta_{d(\alpha^2+\alpha\alpha_s)}[10^{-5}]$ +2.34 +2.15 +2.95

Czarnecki, Kühn '96 Harlander, Seidensticker, Steinhauser '97

Inputs: $M_{\rm Z}=91.1876~{\rm GeV},~M_{\rm W}=80.385~{\rm GeV},~M_{\rm H}=125.7~{\rm GeV}$ $m_{\rm t}=173.5~{\rm GeV},~\Delta\alpha=0.059,~\alpha_{\rm s}=0.1184,~G_{\mu}=1.16638\times 10^{-5}~{\rm GeV}^{-2}$

Z-pole 2-loop flavor dependence:

Impact of EW 2-loop contributions (without EW×QCD):

 $\delta A_4/A_4$: [10⁻⁴]

$m_{\ell\ell}$ [GeV]	Scheme:	α'	α	G_{μ}
60		0.07	0.08	0.06
70		0.17	0.19	0.13
80		0.33	0.38	0.26
$M_{Z}{-2}$		6.03	3.80	3.11
$M_{Z}{-}1$		0.93	0.92	0.69
M_{Z}		0.41	0.44	0.33
M_Z +2		0.22	0.24	0.18
$M_{Z} + 1$		0.11	0.13	0.10
100		0.09	0.09	0.06
110		0.13	0.14	0.09
130		0.12	0.13	0.09
150		0.11	0.12	0.09

Including photon exchange and photon form factor estimate:

(neglecting boxes and s-dependence of Z form factors)

$$A_{4} = \frac{\sum_{q} X_{q} \, 4\left(\frac{v_{\ell}}{a_{\ell}} \frac{v_{q}}{a_{q}} + \frac{v_{\ell q}(s)}{a_{\ell} a_{q}}\right)}{\sum_{q} X_{q} \left(1 + \frac{v_{\ell}^{2}}{a_{\ell}^{2}} + \frac{v_{q}^{2}}{a_{q}^{2}} + \frac{v_{\ell q}^{2}(s)}{a_{\ell}^{2} a_{q}^{2}}\right)} \qquad X_{q} = f_{q}(x_{1}) f_{\bar{q}}(x_{2}) + f_{\bar{q}}(x_{1}) f_{q}(x_{2})$$

$$v_{\ell q}(s) = v_{\ell} v_q + \frac{s - M_{\mathsf{Z}}^2 - i M_{\mathsf{Z}} \Gamma_{\mathsf{Z}}}{s} e^2 e_q \left(1 + \overline{\Delta}_q\right)$$

$$\frac{v_{\ell}}{a_{\ell}} = 1 - 4s_{\ell}^2, \qquad \qquad s_{\ell}^2 \equiv \sin^2 \theta_{\text{eff}}^{\ell}$$

$$\frac{v_q}{a_q} = 1 - 4|e_q|(s_\ell^2 + \Delta_q)$$

$$\Delta_q = \Delta_{q(1)} + \Delta_{q(2)}$$

$$\Delta_q = \overline{\Delta_{q(1)}} + \overline{\Delta_{q(2)}}$$
known unknown

 $\Delta_{q(2)}$ is known (in SM) for leading Z pole term

$$\overline{\Delta}_{q(2)} = \pm \overline{\Delta}_{q(1)} \times \frac{g^2}{16\pi^2} n_f, \qquad n_f = 6 + 6N_c$$
 (maybe underestimate?)

Example contributions to $\overline{\Delta}_{q(1)}$:

Note: 1-loop boxes and s-dependence of Z vertex form factors also contribute at same order (1-loop without Z pole)

Example contributions to $\overline{\Delta}_{q(2)}$:

Including photon exchange and photon form factor estimate:

Impact of EW 2-loop contributions (without EW×QCD):

$$\delta A_4/A_4$$
: [10⁻⁴]

$M_{\ell\ell}$ [48 V]Soliding $M_{\ell\ell}$ [48 V] $M_{\ell\ell}$ [48 V] 60 0.37 0.35 15.50 70 0.52 0.60 8.99 80 1.53 1.61 37.37 $M_{Z}-2$ 17.54 10.27 208.5 $M_{Z}-1$ 2.14 1.97 27.6 M_{Z} 0.58 0.59 0.57 $M_{Z}+2$ 0.45 0.46 10.61 $M_{Z}+1$ 0.55 0.55 16.15 100 0.84 0.83 24.85 110 0.80 0.81 21.71 130 0.53 0.56 12.34 150 0.34 0.38 6.04	$m_{\ell\ell}$ [GeV]	Scheme:	α'	α	G_{μ}
70 0.52 0.60 8.99 80 1.53 1.61 37.37 M_Z-2 17.54 10.27 208.5 M_Z-1 2.14 1.97 27.6 M_Z 0.58 0.59 0.57 M_Z+2 0.45 0.46 10.61 M_Z+1 0.55 0.55 16.15 100 0.84 0.83 24.85 110 0.80 0.81 21.71 130 0.53 0.56 12.34					
801.531.61 37.37 M_Z-2 17.5410.27208.5 M_Z-1 2.141.9727.6 M_Z 0.580.590.57 M_Z+2 0.450.4610.61 M_Z+1 0.550.5516.151000.840.8324.851100.800.8121.711300.530.5612.34					
M_Z-2 17.5410.27208.5 M_Z-1 2.141.9727.6 M_Z 0.580.590.57 M_Z+2 0.450.4610.61 M_Z+1 0.550.5516.151000.840.8324.851100.800.8121.711300.530.5612.34	_				
M_Z-1 2.14 1.97 27.6 M_Z 0.58 0.59 0.57 M_Z+2 0.45 0.46 10.61 M_Z+1 0.55 0.55 16.15 100 0.84 0.83 24.85 110 0.80 0.81 21.71 130 0.53 0.56 12.34	80		1.53	1.61	37.37
M_Z 0.580.590.57 M_Z+2 0.450.4610.61 M_Z+1 0.550.5516.151000.840.8324.851100.800.8121.711300.530.5612.34	$M_{Z}{-2}$		17.54	10.27	208.5
M_Z+2 0.45 0.46 10.61 M_Z+1 0.55 0.55 16.15 100 0.84 0.83 24.85 110 0.80 0.81 21.71 130 0.53 0.56 12.34	$M_{Z}{-}1$		2.14	1.97	27.6
M_Z+1 0.55 0.55 16.15 100 0.84 0.83 24.85 110 0.80 0.81 21.71 130 0.53 0.56 12.34	M_{Z}		0.58	0.59	0.57
100 0.84 0.83 24.85 110 0.80 0.81 21.71 130 0.53 0.56 12.34	M_Z +2		0.45	0.46	10.61
110 0.80 0.81 21.71 130 0.53 0.56 12.34	$M_{Z} + 1$		0.55	0.55	16.15
130 0.53 0.56 12.34	100		0.84	0.83	24.85
	110		0.80	0.81	21.71
150 0.34 0.38 6.04	130		0.53	0.56	12.34
	150		0.34	0.38	6.04

- dominated by photon form factor unc. $\overline{\Delta}_q$
- artifically large corrections for G_{μ} scheme

[same for $(G_{\mu}, s_{\ell}, M_{Z})$ scheme?]

Comments on mass/width scheme

- Pole expansion scheme (PS) and complex-mass scheme (CMS):
 Gauge-invariant (GI), consistent to all orders (at least conceptually)
- Factorization scheme (FS):
 Gauge-invariant (GI), not extendable beyond NLO
- Naive scheme (NS) and other gauge-dependent (GD) schemes:
 can lead to completely wrong results
- Difference GI-GD is meaningless, cannot be used for theory error estimate
- Difference PS–FS, PS–CMS, CMS–FS is of higher order (NNLO)
 - → Can be used as indication for theory error, but may not fully capture it