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On Z resonance (leading pole term);
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A 2y is known (in SM) for leading Z pole term Freitas '14
Dubovyuk, Freitas, Gluza, Riemann, Usovitsch '19
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/-pole 2-loop flavor dependence:

Assume: no EW 2-loop corrections included in analysis (i.e. they are theory unc.)

Schemes: e o : Use a, My, Mz as inputs, perturb. exp. in o
e o : Use o, Gy, Mz as inputs, perturb. exp. in o
e GGy, : Use G, My, Mz as inputs, perturb. exp. in G,

Scheme: o e’ G
A (02 [107°] —~1.74 —-1.82 —1.45
A jq2y [1077] —1.49 —-1.67 —0.88

Inputs: Mz = 91.1876 GeV, My = 80.385 GeV, My = 125.7 GeV
my = 173.5 GeV, Aa = 0.059, as = 0.1184, G, = 1.16638 x 107> GeV2
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/-pole 2-loop flavor dependence:

Assume: no EW 2-loop corrections included in analysis (i.e. they are theory unc.)

Schemes: e o : Use a, My, Mz as inputs, perturb. exp. in o

e o : Use o, Gy, Mz as inputs, perturb. exp. in o

e GGy, : Use G, My, Mz as inputs, perturb. exp. in G,
Scheme: o e’ G
A (02 [107°] ~1.74 -1.82 -1.45
A jo2y [1077] ~1.49 -1.67 -—0.88
including non-factorizable EW xQCD corrections: Czarnecki, Kiihn '96

-5 Harlander, Seidensticker,

Au(aQ—l—aas) [107°] +4+1.47 41.38 +41.74 Steinhauser 97

A j(o2+ang) [107°] +2.34 +2.15 +2.95

Inputs: Mz = 91.1876 GeV, My = 80.385 GeV, My = 125.7 GeV
my = 173.5 GeV, Aa = 0.059, as = 0.1184, G, = 1.16638 x 1075 GeV 2
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/-pole 2-loop flavor dependence:

Impact of EW 2-loop contributions (without EW xQCD):

8A4/A4:[1074]

myy [GeV] Scheme: <o/ o Gpu
60 0.07 0.08 0.06
70 0.17 0.19 0.13
80 0.33 0.38 0.26
My—2 6.03 3.80 3.11
My—1 093 092 0.69
Mz 041 044 0.33
M>—+2 0.22 0.24 0.18
Mz+1 0.11  0.13  0.10
100 0.09 0.09 0.06
110 0.13 0.14 0.09
130 0.12 0.13 0.09
150 0.11 0.12 0.09




S/7

Including photon exchange and photon form factor estimate:
(neglecting boxes and s-dependence of Z form factors)
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A (2 is known (in SM) for leading Z pole term
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Example contributions to A 4 y:
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Note: 1-loop boxes and s-dependence of Z vertex form factors also contribute at
same order (1-loop without Z pole)

Example contributions to A (5y:
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Including photon exchange and photon form factor estimate:

Impact of EW 2-loop contributions (without EW xQCD):

8A4/A4:[1074]

myp [GeV]  Scheme: o/ a Gy

60 0.37 0.35 15.50
70 0.52 0.60 8.99
80 1.53 1.61 37.37
M5—2 17.54 10.27 208.5
My—1 214 197 276
M~ 0.58 0.59 0.57
Mz+2 0.45 0.46 10.61
Mz+1 0.55 0.55 16.15
100 0.84 0.83 24.85
110 0.80 0.81 21.71
130 0.53 0.56 12.34
150 0.34 0.38 6.04

e dominated by photon form
factor unc. A,

e artifically large corrections
for G, scheme
[same for (G, s¢, Mz) scheme?]




Comments on mass/width scheme

e Pole expansion scheme (PS) and complex-mass scheme (CMS):
Gauge-invariant (Gl), consistent to all orders (at least conceptually)

e Factorization scheme (FS):
Gauge-invariant (Gl), not extendable beyond NLO

e Naive scheme (NS) and other gauge-dependent (GD) schemes:
can lead to completely wrong results

e Difference GI-GD is meaningless, cannot be used for theory error estimate

e Difference PS—FS, PS-CMS, CMS—FS is of higher order (NNLO)
— Can be used as indication for theory error, but may not fully capture it




