9th CERN Patatrack Hackathon @TUE

GROUP 3, 14 JULY 2021

Luis Roma Barge, Mees Willem Bieling, Ngoc Quan Pham

Department of Hacking

Goal Identifying tracksters and the points belonging to them

Luis Roma Barge, Mees Willem Bieling, Ngoc Quan Pham Group 3 - Final Solution

2

Event 11

Datasets

- Contains information about positions, energy, time, and layers
- Intuitively, there are areas that are more densely populated
- Some pattern intuition involving Z

3

Main idea

4

- Focusing on **density**-> DBSCAN algorithm
- DBSCAN uses core samples to build the clusters around them -> More energetic points
- HDBSCAN = DBSCAN + varying density clusters

Luis Roma Barge, Mees Willem Bieling, Ngoc Quan Pham Group 3 - Final Solution

Findings

5

labels = clusterer.fit_predict(df[['eta', 'phi']])

- Clustered on density based on η and φ
- You can fine-tune HDBSCAN with these parameters
 - min_cluster_size and min_samples -> # to consider a cluster
 - cluster_selection_epsilon -> minimum separation between clusters

Results (I)

6

Luis Roma Barge, Mees Willem Bieling, Ngoc Quan Pham Group 3 - Final Solution TU/e

Classifying outliers

- KDTree on the classified points
- For the not classified:

7

- Find the nearest point in the classified tree
- Take the cluster from that point
- Assign that cluster to the unclassified point

Luis Roma Barge, Mees Willem Bieling, Ngoc Quan Pham Group 3 - Final Solution

8

TU/e

Luis Roma Barge, Mees Willem Bieling, Ngoc Quan Pham Group 3 - Final Solution

9

TU/e

Future possible improvements

Best approach is raw clustering to get the number of clusters following with precise (density-based) clustering method such as:

- 1. Flatten the image in each clusters' angle and use a stricter cluster algorithm based on the energy density
- 2. Use HBDSCAN to create a tree based on energy density and pick the appropriate level contour that matches to expected energy of the particles
- 3. Create circles around points and expand until it includes n points, the radius of each circles corresponds whether it is a core point, boundary point or noise point (the outliers)
- **4. Extra:** Use temporal dependencies to distinguish different particle showers for files with overlapping showers

