CMS: perspective, wishes, proposals, and views on the working group

Raphaël Granier de Cassagnac (Polytechnique), Yi Chen (MIT), Yongsun Kim (Sejong University), <u>Georgios K. Krintiras</u> (Kansas U), André Ståhl (Rice University)

On behalf of the CMS Collaboration

Kickoff meeting of the LPCC working group on heavy-ions

Reflecting on what **achieved** so far and future **expectations**

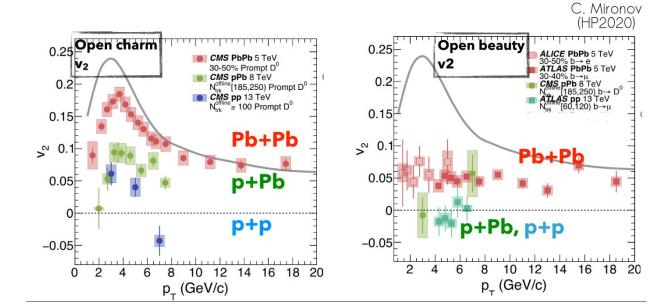
- Thermalization and hadronization of heavy guarks
 - Modification of heavy quark hadronization with D⁰, D_s, D*, B⁺, B⁰, B_s, Λ_c , Λ_b , B_c Direct detection of charm diffusion: jet-D⁰ and γ -D⁰ angular correlation Ο
 - Ο
 - DD correlations: studies of heavy quark energy loss mechanism 0
- Pinning down uncertainties in initial state and extraction of QGP properties at various scales
 - Electroweak boson production Ο
 - Photon- and Z-tagged jets 0
 - Quarkonia and observation, e.g., of Y(3S) production Ο
 - Jet substructure as a tool for the study of QGP constituents 0
 - Top quark production as novel tool in pPb/PbPb Ο

Initial-state effects and QGP formation in small systems

- Flow correlation in high statistics peripheral PbPb collisions Ο
- Search for jet guenching in high-multiplicity pp, pPb, pO and OO collisions Ο
- Study of exotic particles and search for BSM physics
 - Probe the inner structure of X(3872) and other exotic states (for example $f_0(980)$) with QGP Ο
 - Light-by-light scattering and ALP searches 0

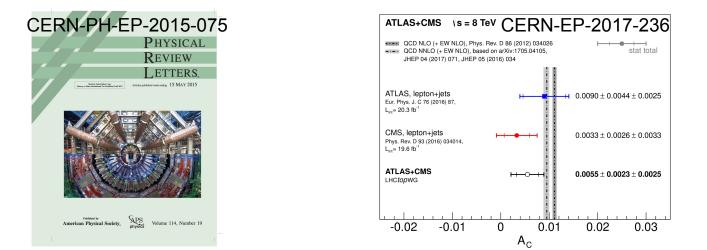
New MTD capabilities

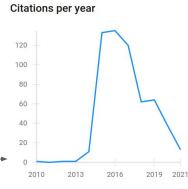
- Charge and baryon number fluctuation capability with large acceptance detector (up to |eta|<4) and MTD (PID) Ο
- Jet hadronization Ο


CMS welcomes the group implementation!

About time

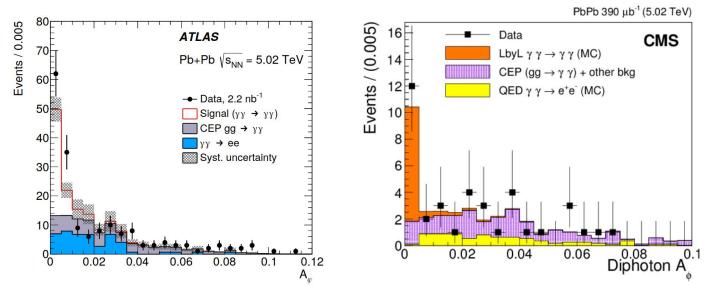
- Experiments: large enough data sets while preparing for the "boost" from Runs 3 & 4
- <u>Accelerator front</u>: valuable running experience gained
- <u>Theory community</u>: improved modeling but need experimental input (observables, common format, uncertainties...)
- Following up on past experience from other LHC working groups (some of them already since early Run 1)
 - we could envisage some **interaction** with them at least for the beginning?
 - milestones they reached and challenges they faced
 - mandate of the group yet to be formed, e.g., approval process, treatment of confidential information...
- Organization wise, we think acting in a transparent and efficient way means:
 - **splitting** into working subgroups
 - **frequent** closed meetings
 - key persons, e.g., generator experts, can be invited
 - **regular** (e.g., biannual?) open plenary meetings
 - web page (twiki/foswiki) with formed recommendations and updated results, and links to documentation
 - a logo could promote/advertise the common effort too


First things first: Summary Plots


- A series of LHC measurements that can be included
 - subgroups can identify and propose their lists
 - a common repository for code sharing and easy reproduction to be formed
- Summary plots (so far custom made) to be
 - provided by the LHC HI Working Group
 - for the benefit of the LHC Collaborations
 - reproduction of the figures allowed as specified in a Creative Commons license

Past combination efforts: What is the gain?

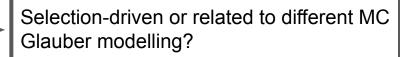
- CMS performed 6 joint publications so far
 - All with Run 1 data
 - experiments priority is first to understand and publish with their own data
 - **5** with ATLAS (2 in HIG with 1000+ citations & 3 in TOP groups)
 - **1** with LHCb ($B_s \rightarrow \mu\mu$, in Nature with 500+ citations)
- Combination efforts lead to
 - improved final uncertainty and probably most precise measurements to date
 - first definitive observations in cases where neither of the individual results have sufficient precision
 - highly cited publications \rightarrow motivation to "counterbalance" the extra internal review time



BPH-13-007:>500

A representative example I: Light-by-light (LbL) scattering

- Four available measurements in PbPb (so far)
- ATLAS
 - 2015 data, 0.49 nb-1, CERN-EP-2016-316
 - 2018 data, 1.73 nb-1, CERN-EP-2019-051
 - 2015+18 data, 2.2 nb-1, CERN-EP-2020-135
- CMS
 - **2015 data**, 0.39 nb-1, CERN-EP-2018-271
- Ongoing work in the realm of $\underline{HonexComb} \rightarrow see$ also Giulia's presentations



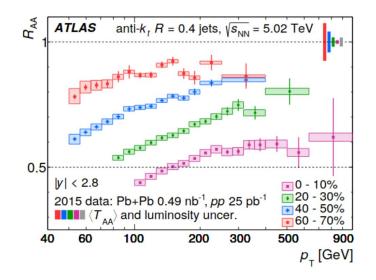

How a combined measurement will

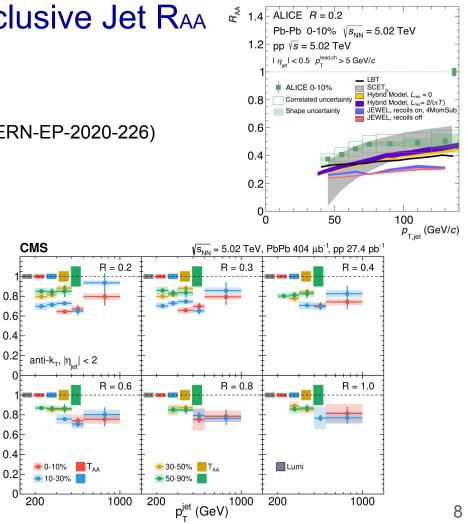
- compare to theory?
- impact reinterpretation, ALP limits?

A representative **example II**: Electroweak boson production

- For the latest two measurements in PbPb
 - ATLAS
 - 2015 data, CERN-EP-2019-182
 - CMS
 - 2018 data, CERN-EP-2021-039
 - some tension exists (~3 sigma)
 - data show an indication of an **opposite** centrality dependence

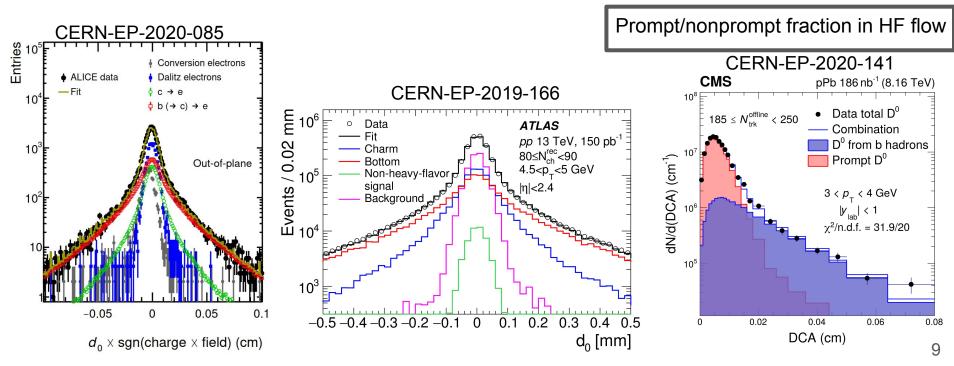
7

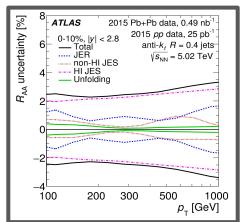

A representative example III: Inclusive Jet RAA

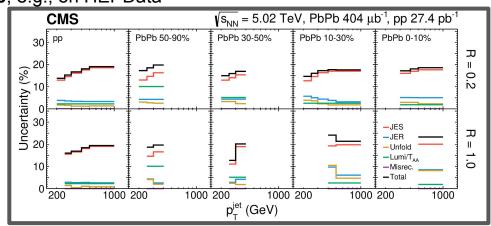

- For the latest measurements in PbPb (2015 data) •
 - ALICE: lower p_T jets (CERN-EP-2019-200)
 - ATLAS: higher p_T jets (CERN-EP-2018-105) •
 - CMS: higher p_T jets, up to large R (0.2 ~ 1.0) (CERN-EP-2020-226)

RAA

0.8

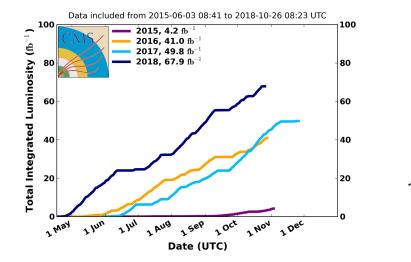

Towards a universal description of jet suppression as a function of p_T and R


Common ground I: Observables and techniques

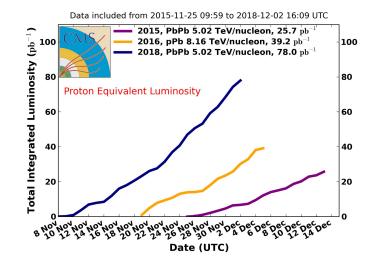

- We think that common work or close definition on
 - global-event variables (e.g., centrality in small systems, charged particle multiplicity, etc)
 - analysis techniques (e.g., correlations and nonflow treatment, (sub)jet reconstruction, <u>simulation</u> <u>settings</u>, Glauber MC, UPC simulation for pO/OO, binning of distributions, phase space region, etc)
- would help identify spurious selection effects and comparison with theory

Common ground II: Corrections and systematic uncertainties

- We think that some corrections can be harmonized among experiments
 - e.g., the determination of the background, and its subtraction \rightarrow relevant for unfolding
 - definition and quoting of theory uncertainties
- Same holds true for a set of systematic uncertainties
 - could be quite **different** for experiments, e.g., method or level of splitting of systematic components
- Often hard to get an idea of correlations
 - Fraction coming from MC modeling and from the detector? Correlated vs. uncorrelated? Source-by-source? Across measurements (e.g. across different centrality from same paper)?
 - Luminosity what fraction of total uncertainty is correlated among experiments?
- Good to come up with mapping of uncertainties, and
 - uncertainty correlations publicly available, e.g., on HEPData


10

A good place for "pre-discussion" on **running schedule**?


- Before going to LHCC we think the LPCC HI Working Group can serve as basis for discussion on
 - considerations on running schedule

CMS Integrated Luminosity Delivered, pp, $\sqrt{s} = 13$ TeV

- expected **performance** and recipes for **mitigations** if need be, e.g., beam transmutation in OO
- setting common goals → higher chances for increased allocated HI time?

CMS Integrated Luminosity Delivered, PbPb+pPb

1

A natural place for communicating/interacting with theory community

- While the work remains experimental in nature, **close contact** with the theory community too
 - We expect the theory conveners to steer the effort
- It is important to come up with a standard on the theoretical predictions and request process
 - For instance, experiments depending on their needs request a set of theoretical predictions
 - This "on demand" process may not necessarily result to identical predictions
 - e.g., different parameters could have been used for the different requests or updated prescriptions could have become available
 - A **standard set** of predictions on various phase space regions covered by LHC experiments would be beneficial
- After subgroups identify a list of "higher priority observables to be combined" this procedure can be of higher relevance and wider/immediate applicability

Outlook

- CMS welcomes the effort for the **official formation** of the LHC HI Working Group(!)
 - initial practicalities: mandate and central web page (twiki) to be formed
 - knowledge sharing with other Working Groups can be beneficial
- Depending on experiments' involvement, we think **subgroups** will efficiently steer the effort
 - while the work remains experimental in nature, close contact with the **theory community** too
- First things first
 - **summary plots** a good/promising starting point for the Working Group mandate
- CMS is open to combination efforts building upon successful past experience
 - a list of topics with relative priority presented and exemplary analyses highlighted
- Important to cover a common ground
 - observables and techniques
 - corrections and associated systematic uncertainties
- The Working Group is
 - potentially a good basis for discussions related to running schedule
 - a natural place to standardize the procedure on requesting theoretical predictions
- Once agreements reached and common formats obtained we can **extend them** to
 - Open data
 - Combinations with extra-LHC, e.g., RHIC measurements

