Charm cross-section activities in HonexComb

LPCC working group on heavy-ions

Jiayin Sun (Università e INFN, Cagliari)
for the HonexComb charm group:
R. G. De Cassagnac, G. Manca, C. Bierlich, J. Sun, J. Metwally, M. Mazzilli, G.M. Innocenti, A. Geiser, Y. Yang

07/07/2021
Introduction

- Objectives: obtain a combined measurement of $\sigma_{\text{tot}}(c\bar{c})$ and σ_{charm} vs. p_T and y using existing published measurements of ALICE, CMS and LHCb at 5 TeV.
 - Understand theory, find “best” description for total charm cross-section
 - Critical input for calculations in AA collisions

- Goals:
 - Collecting in a common database the relevant charm measurements in pp collisions in a consistent ROOT/txt format.
 - Providing summary plots to be used in review papers and summary talks
 - Providing comprehensive comparisons to theoretical calculations in the various rapidity and transverse momentum regions.
 - Encourage the development of dedicated tunes for theoretical calculations (e.g. Pythia) that consider the knowledge acquired after 10 years of charm measurements at the LHC
 - Common and unique inputs for charm differential cross-section vs. p_T and rapidity to be used as input for AA theoretical calculations
 - Provide an estimation of the total charm cross-section, which incorporates the constraints coming from the various LHC experiments
Charm results and combination

- Collection of open charm results in pp collisions at 5 TeV

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Ref. code</th>
<th>Hadronic decays</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE</td>
<td>EPJC 79, 388 (2019)</td>
<td>$D^0 \rightarrow K^-\pi^+, D^+ \rightarrow K^-\pi^+\pi^+, D_s^+ \rightarrow \phi\pi^+ \rightarrow K^+K^-\pi^+, D^{*+} \rightarrow D^{0}\pi^+ (\pm \text{c.c.})$</td>
</tr>
<tr>
<td>ALICE</td>
<td>PRL (CERN-EP-2020-217)</td>
<td>$\Lambda_c^+ \rightarrow pK^-\pi^+, \Lambda_c^+ \rightarrow pK_S^0 (\pm \text{c.c.})$</td>
</tr>
<tr>
<td>ALICE</td>
<td>PRC (CERN-EP-2020-218)</td>
<td>$\Lambda_c^+ \rightarrow pK^-\pi^+, \Lambda_c^+ \rightarrow pK_S^0 (\pm \text{c.c.})$</td>
</tr>
<tr>
<td>CMS</td>
<td>PLB, v. 782, 2018, p 474-496</td>
<td>$D^0 \rightarrow K^-\pi^+ (\pm \text{c.c.})$</td>
</tr>
<tr>
<td>CMS</td>
<td>PLB, v. 803, 2020, 135328</td>
<td>$\Lambda_c^+ \rightarrow pK^-\pi^+ (\pm \text{c.c.})$</td>
</tr>
<tr>
<td>LHCb</td>
<td>JHEP, 147 (2017)</td>
<td>$D^0 \rightarrow K^-\pi^+, D^+ \rightarrow K^-\pi^+\pi^+, D_s^+ \rightarrow \phi\pi^+ \rightarrow K^+K^-\pi^+, D^{*+} \rightarrow D^{0}\pi^+ (\pm \text{c.c.})$</td>
</tr>
</tbody>
</table>

- Kinematic regions (D^0):
 - ALICE: $0 < p_T < 36$ GeV/c; $-0.5 < y < 0.5$
 - CMS: $2 < p_T < 100$ GeV/c; $-1.0 < y < 1.0$
 - LHCb: $0 < p_T < 10$ GeV/c; $2.0 < y < 4.5$ in $\Delta y = 0.5$ bins

- Produce compilation plots of σ_{charm} vs. p_T and y

- All information collected and accessible in twiki:
 - https://twiki.cern.ch/twiki/bin/view/Honexcomb/HonexcombCharmSection
Combination plots for D^0

- D^0 cross-section in p_T and y
- D^0 cross-section vs. y in p_T slices
- Next: comparison to Pythia and FONLL event generators…

Kinematic regions (D^0):
- ALICE: $0 < p_T < 36$ GeV/c; $-0.5 < y < 0.5$
- CMS: $2 < p_T < 100$ GeV/c; $-1.0 < y < 1.0$
- LHCb: $0 < p_T < 10$ GeV/c; $2.0 < y < 4.5$
Combination plots for D^0

- D^0 cross-section in p_T and y
- D^0 cross-section vs. y in p_T slices
- PYTHIA: SoftQCD with color reconnection (CR) modes.

Kinematic regions (D^0):
- ALICE: $0 < p_T < 36$ GeV/c; $-0.5 < y < 0.5$
- CMS: $2 < p_T < 100$ GeV/c; $-1.0 < y < 1.0$
- LHCb: $0 < p_T < 10$ GeV/c; $2.0 < y < 4.5$
Combination plots for D^+

- D^+ cross-section in p_T and y
- D^+ cross-section vs. y in p_T slices
- PYTHIA: SoftQCD with color reconnection (CR) modes.

ATL-PHYS-PUB-2017-008
Combination plots for D^*

- D^* cross-section in p_T and y
- D^* cross-section vs. y in p_T slices
- PYTHIA: SoftQCD with color reconnection (CR) modes.

ATL-PHYS-PUB-2017-008
Combination plots for D_s^+

- D_s^+ cross-section in p_T and y
- D_s^+ cross-section vs. y in p_T slices
- PYTHIA: SoftQCD with color reconnection (CR) modes.

ATL-PHYS-PUB-2017-008
PYTHIA-data comparison

- Data from ALICE, CMS and LHCb do not cover the full rapidity range, interpolation and extrapolation must be performed to estimate the total charm cross section.
 - PYTHIA and FONLL event generators
 - PYTHIA settings:
 - Parton-shower approach for charm production in very low p_T
 - For hard $2 \rightarrow 2$ process use the PYTHIA model for multiparton interactions [PRD 36 (1987) 2019]
 - The only remaining parameter to fix is the charm mass, default value in PYTHIA is 1.5 GeV
 - Scan charm mass from 1.1 to 1.9 GeV, in 0.1 GeV step size. Produce 10M PYTHIA events for each charm mass value.
 - Find the best charm mass value from simultaneous fit to measured charmed hadrons cross-section in (p_T, y) space.
 - Currently, made comparisons for D^0, D^+ and D^* mesons. Comparison for D^+_s meson is upcoming.
D^0 comparison to PYTHIA

- 10M PYTHIA events for each charm mass value (m_0) from 1.1 to 1.9 GeV, in 0.1 GeV step.
- Cross-section vs. rapidity in p_T slices
- Using 5TeV pp data from ALICE, CMS and LHCb
D^+ comparison to PYTHIA

- 10M PYTHIA events for each charm mass value (m_0) from 1.1 to 1.9 GeV, in 0.1 GeV step.
- Cross-section vs. rapidity in p_T slices
- Using 5TeV pp data from ALICE and LHCb
D* comparison to PYTHIA

- 10M PYTHIA events for each charm mass value (m0) from 1.1 to 1.9 GeV, in 0.1GeV step.
- Cross-section vs. rapidity in p_T slices
- Using 5TeV pp data from ALICE and LHCb
Simultaneous fit

Work in progress

- Simultaneous fit across D^0, D^+ and D^* to find the best charm mass value (m_0).

- Use the same binning as the published data from ALICE/CMS/LHCb, compare each point between data and PYTHIA, calculate χ^2.

- For this plot, using $p_T < 6 \text{ GeV}/c$, ALICE and LHCb points. Using total uncertainty. Fit with a 3rd order polynomial function.

- LHCb points provide most constraint.

- Next steps:
 - Add D_s^+, also consider Λ_c^+
 - Add contribution from CMS data points. Produce more MC at higher p_T.
 - Fine tune uncertainty treatment

m_0
Comparison with FONLL for D^0

Work in progress

- **FONLL** settings:
 - PDF: CTEQ 6.6 + unc.
 - mc: 1.5 ± 0.2 GeV

- Fragmentation tuned to LEP data

FONLL: NLO + NLL QCD prediction, absolute prediction with uncertainties
Summary

- The project of total charm cross-section from combining ALICE, CMS and LHCb measurements is making good progress.

- Comparisons with theoretical models are ongoing.
 - Working on fixing charm mass parameter for PYTHIA
 - Parallel work on FONLL ongoing

- Extrapolation to obtain total cross-section, with uncertainty determination.

- Preparing paper on data/theory comparisons and total charm cross-section in the next 1-2 months.