C³ C³ – Cool Copper Collider: CLIC Discussion

7/26/2021

NCRF Accelerator Concept Starting Point for a High Energy e⁺e⁻ Linear Collider

- Using established collider designs to inform initial parameters
- Quantifying impact of wakes requires detailed studies
 - Most important terms aperture, bunch charge (and their scaling with frequency)
- Target design at 0.25-2 TeV CoM 6
- 2.5-9 MW single beam power

Machine	CLIC	NLC	C ³
Freq (GHz)	12.0	11.4	5.7
a (mm)	2.75	3.9	2.6
Charge (nC)	0.6	1.4	1
Spacing	6	16	19
# of bunches	312	90	75

https://clic-meeting.web.cern.ch/clicmeeting/clictable2010.html NLC, ZDR Tbl. 1.3,8.3

Leverage the Development of Beam Generation and Delivery Systems for C³

 Large portions of accelerator complex are compatible between LC technologies

SLAC

- Beam delivery and IP identical with ILC
- Damping rings with CLIC
- Injectors to be optimized with ILC as baseline

R&D – Development of high brightness polarized e- sources

Optimized Cavity Geometries for 2π/3-mode Standing Wave LINAC

Small aperture for reduced phase achieves exceptional R_s

SLAC

T [K]

Cryogenic operation: Increased R_s, reduced pulse heating

0

0.5

1.5

0.0 0.2 0.4

0.6 0.8

Distance (cm)

Gaussian Detuning Provides Required 1st Band Dipole Suppression for Subsequent Bunch, Damping Also Needed

- Dipole mode wakefields immediate concern for bunch train
- 4σ Gaussian detuning of 80 cells for dipole mode (1st band) at f_c = 9.5 GHz, w/ Δf/f_c = 5.6%
- First subsequent bunch s = 1m, full train ~75m in length
 - Damping needed to suppress re-coherence

Distributed Coupling Structures Provide Natural Path to Implement Detuning and Damping of Higher Order Modes

- Individual cell feeds necessitate adoption of split-block assembly
- Perturbation due to joint does not couple to accelerating mode
- Exploring gaps in quadrature to damp higher order mode

Design of Detuned Cavities

SLAC

Abe et al., PASJ, 2017, WEP039 6

Development of C³ Technology is Ongoing

- Key focus C³ is a practical technology
- Exploring 250 GeV to 2 TeV COM

One meter (40-cell) C-band design with reduce peak E and H-field

S. Tantawi, and Z. Li

Scaling fabrication techniques in length and including controlled gap

C3 Prototype Structure Built and Tuned

High Gradient Test with Single-Cell C-band

- Reduced phase advance LANL High structure in test at LANL for high power
 - Also tested at low power and cryogenic temperature
 - Cool down improved Q by >2.3X; also observed at X-band

SLAC

C-band Cavity (@LANL/@SLAC cold)

C³'s Scalable Design

- Preliminary ∆E = 1 GeV
 Cryomodule Design for High
 Average Power Implementation
 with ~90% Fill Factor
- Cryomodule design developed for cryoplant layout to cool 24 MW/linac thermal load at 77K

RF Source R&D Remains a Major Focus Over the Timescale of the Next P5

- Optimizing the cost of NCRF technology a fundamental requirement for its implementation for future facilities
- RF source cost is the key driver for gradient and cost need to focus R&D on reducing source cost

Gradient/Cost Scaling vs RF Source Cost for 2 TeV CoM

Understand the Impact on Advanced Collider Concept Enabled by the Goals Defined in the DOE GARD RF Decadal Roadmap

https://science.energy.gov/~/media/hep/pdf/Reports/DOE_HEP_GARD_RF_Research_Roadmap_Report.pdf

CERN/HEIKA Collaboration

Timeline to demos?

Interest in extending work to C-band?

PM design?

Details of costing for rf source?

SLAC

Pout & Efficiency vs Beam Voltage

CPI/CERN Collaboration on 50 MW X-band – CLIC Meeting 2019

RF Power Requirements – Lower Gradient Starting Point?

- 70 MeV/m 250 ns Flattop (extendible to 500 ns)
- ~1 microsecond rf pulse, ~44 MW/m (with beam loading)
 - Conservative 2.3X enhancement from cryo
- No pulse compression
- Ramp power to reduce reflected power
- Flip phase at output to reduce thermals
- Operation at full gradient 117 MeV/m requires 80 MW/m (45 MW/m to gradient, 35 MW/m to beam)

Summary of Parameters for 1 GeV Cryomodule Based on C-Band 5.712 GHz, $a/\lambda=0.05$, $2\pi/3$ Structure

SLAC

Key Assumption: 120 Hz

Temperature	e (K)		77	
Cryomodule Ler	ngth (m)		9	
50 MW Klyst	rons	Ru	8	
Gradient (Me	V/m)	Du	117	
Pulse Length	(µs)		0.25-0.5	
Cryogenic Load @	77K (kW/m)		<2	
Electrical Load Cryo-C	Cooler (kW/n	า)	<20	
Trains repeat at 120 Hz				
Pulse Format		_		
1 nC bunches spaced by 11 RF periods		F n	RF Envelope 250 s; 1428 RF cycle	D es

Parameter (500 GeV CoM)	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power	MW	4
Total Beam Power	MW	8
Total RF Power	MW	15
Heat Load at Cryogenic Temperature	MW	5.4
Electrical Power for RF	MW	22.8
Electrical Power for Cryo-Cooler	MW	51.6

Summary of Parameters for 250 GeV Conceptual Design Based on C-Band 5.712 GHz, $a/\lambda=0.05$, $2\pi/3$ Structure

SLAC

	Key Assumption:	RF source - \$2/	/peak-kW		Parameter (250	Units	Value
	Temperat	ure (K)	77		GeV CoM)		
	Beam Load	ding (%)	65		Reliquification Plant Cost	M\$/MW	18
	Gradient (MeV/m)	117		Single Beam	MW	2.5
	Pulse Leng	gth (µs)	0.25-0.5		Power (1 TeV linac)		
	Cryogenic Load	@ 77K (MW)	2.7		Total Beam Power	MW	5
	Electrical Lo	oad (MW)	37		Total RF Power	MW	7.6
	Trains repeat at 120 Hz	([])]	Π	Heat Load at Cryogenic Temperature	MW	2.7
Pulse Format				Electrical Power for RF	MW	11.4	
75-15	50 1 nC bunches spaced by		RF Envelop ns; 1428 RF	e 250 cycles	Electrical Power for Cryo-Cooler	MW	25.6
8	3 19 RF per ns)		,				15

Summary of Parameters for 2 TeV Conceptual Design Based on C-Band 5.712 GHz, $a/\lambda=0.05$, $2\pi/3$ Structure

-SLAC

Key Assumption: RF source - \$2/	peak-kW	Parameter
Temperature (K)	77	СоМ
Beam Loading (%)	42.5	Reliquific Plant C
Gradient (MeV/m)	117	Single B
Pulse Length (µs)	0.25	Power (1 linac
Cryogenic Load @ 77K (MW)	22	Total Beam
Electrical Load (MW)	170	Total RF F
Need Pulse Compressor	Π	Heat Loa Cryoge Tempera
Pulse Format		Electrical for R
75 1 nC bunches spaced by 19 RF periods (3.3 ns)	F Envelope 250 ; 1428 RF cycles	Electrical for Cryo-C

Parameter (2 TeV CoM)	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power (1 TeV linac)	MW	9
Total Beam Power	MW	18
Total RF Power	MW	40
Heat Load at Cryogenic Temperature	MW	22
Electrical Power for RF	MW	60
Electrical Power for Cryo-Cooler	MW	110

Proposed Next Steps for C³

• Goals:

- Develop and verify performance of GeV cryomodules
- Develop and integrate advanced RF sources
- Beam line elements beam monitoring and precision transport
- Option: Upgrade ESB to house and develop C³ technology
 - Applications to motivate this? UCXFEL is the prefect scale to develop the technology
 - Added benefit with cryo-gun development
- Mid-term R&D: Sources, damping, cryogenic quads, fabrication...

CCC to Scale

-SLAC

String test fits on the scale of existing research infrastructure

CCC to Scale

250 GeV main linac at Fermilab

Questions?

NCRF Accelerator System Cost Model for Innovative Standing-Wave Accelerator Topologies

- Total accelerator system cost (C) can be expressed as:
 - C ≈ xE/G + yE(I + G/R_s) + aux systems cost (e.g. injector)

Length Beam Power Dissipated Power Structure

- Where
 - E beam energy (eV)
 - x accelerator cost/length (\$/m)

(tunnel cost + structure cost)

- G accelerating gradient (V/m)
- y RF system cost/peak power (\$/kW

(include power supply, RF source,...)

- R_s shunt impedance (Ω)
- I beam current (A)
- Cost Optimized Gradient
 - $G = (R_s x/y)^{0.5}$

*Will hold these <u>assumptions</u> chosen to evaluate relationship between parameters constant unless specified

Optimized Cavity Geometries for 2π/3-mode Standing Wave LINAC

Small aperture for reduced phase achieves exceptional R_s

SLAC

Cryogenic operation: Increased R_s, reduced pulse heating

0.2

0

0.5

1.5

0.0 0.2 0.4

0.6 0.8

Distance (cm)

0.000

50

100

150

 \perp [K]

200

250

Optimized Cavity Geometries for 2π/3-mode Standing Wave LINAC

Small aperture for reduced phase achieves exceptional R_s

SLAC

Cryogenic operation: Increased R_s, reduced pulse heating

0.2

0

0.5

1.5

0.0 0.2 0.4

0.6 0.8

Distance (cm)

0.000

50

100

150

 \perp [K]

200

250

Gaussian Detuning Provides Required 1st Band Dipole Suppression for Subsequent Bunch, Damping Also Needed

- Dipole mode wakefields immediate concern for bunch train
- 4σ Gaussian detuning of 80 cells for dipole mode (1st band) at f_c = 9.5 GHz, w/ Δf/f_c = 5.6%
- First subsequent bunch s = 1m, full train ~75m in length
 - Damping needed to suppress re-coherence

Distributed Coupling Structures Provide Natural Path to Implement Detuning and Damping of Higher Order Modes

- Individual cell feeds necessitate adoption of split-block assembly
- Perturbation due to joint does not couple to accelerating mode
- Exploring gaps in quadrature to damp higher order mode

Design of Detuned Cavities

SLAC

Quadrant Structure

Abe et al., PASJ, 2017, WEP039 $_{25}$