
Mili-Charged Strongly 
Interacting Dark Matter



A Quick Review of Dark Matter

Two Key Properties:


-Dark matter must be stable over more than the lifetime of the universe.


-Dark matter must essentially also both be electrically neutral and effectively neutral with 
respect to the SM.



Why Strongly Interacting DM?
-Stability: The stability of composite dark matter candidates is an automatic consequence of the 
accidental global flavour symmetries of the underlying theory.


-Naturalness: Just like in QCD, once a non-Abelian theory confines, a new scale appears in the 
theory, allowing for an effective theory description of the low energy theory.


-Neutrality: If constituents transform under (part of) the SM gauge symmetries, confinement can lead 
to colour, weak, and charge-neutral dark hadrons that are idea DM candidates.


-Suppressed interactions: The effective theory below the confinement scale can be expressed in 
terms of higher dimensional operators involving DM fields and SM fields, suppressed by powers of 
the DM confinement scale.


-Self-interactions: Strongly-coupled theories naturally have strong self-interactions among the Dark 
mesons and baryons. These interactions may be responsible for addressing the observed galactic 
structure anomalies and DM abundance.


-New observables: A rich spectrum of dark hadrons from a confined dark non-Abelian theory would 
provide a plethora of experimental targets. 



Many Possible Types of Strongly Interacting Dark Matter

-Meson DM I: Pion-like


-Meson DM II: Quarkonium-like (at least one heavy dark fermion)


-Baryon-like DM


-Dark Glueballs.



How can DM be mili-charged?



Example: DM Candidates with Electromagnetically Charged 
Constituents.

Coupling to the photon is proportional to:

The interaction of dark matter with ordinary matter mediated by a standard model

force carrier can give a distinctive scaling of the interaction cross-section with the choice of

nuclear target, depending on the exact nature of the interaction. A strongly distinguishable

case would be photon exchange coupling to the nuclear magnetic moment, which can give

a direct detection cross section varying by several orders of magnitude among commonly-

used target elements. More complete e↵ective field theory treatments of how a general dark

matter particle can interact with nuclear direct-detection targets have been considered in

the literature [12–16, 107]. For very light (sub-GeV) dark matter, which can arise from some

composite models, scattering o↵ of electrons can provide stronger direct-detection bounds

[108–112]

We will focus in this review on photon and Higgs-mediated direct detection through

moments of the dark matter. Z-boson exchange proceeds through dark moments similar

to those for photon exchange, but is additionally suppressed by the Z mass. Gluon-based

interactions are an interesting possibility which have been considered in the literature [65,

113, 114].

A. Photon interactions

If the composite dark matter candidate � is neutral, but its constituents carry electro-

magnetic charge, then its coupling to the photon is proportional to the matrix element

h�(p0)|jµEM|�(p)i = F (q2)qµ, (3)

where qµ = pµ + p0
µ
, jµEM is the electromagnetic current, and F (0) = 0. In the limit that

the momentum transfer |q| is very small compared to the compositeness scale ⇤, which is

appropriate for dark matter direct detection, the form factor can be described in terms of

e↵ective field theory operators of increasing dimension. The leading C and P-conserving

operators are [66, 67] the magnetic moment

L �
1

⇤
�̄�µ⌫�Fµ⌫ , (4)

the charge radius

L �
1

⇤2
�̄�⌫�@µFµ⌫ ,

1

⇤2
�†�v⌫@µFµ⌫ , (5)
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and the electromagnetic polarizability

L �
1

⇤3
�̄�Fµ⌫F

µ⌫ ,
1

⇤3
�†�Fµ⌫F

µ⌫ , (6)

where � represents a fermionic dark matter candidate, and � a spin-zero bosonic candidate.

If � were a boson with non-zero spin, it would also have a magnetic moment operator.

(Note that the dimensions of the operators are the same for scalar dark matter, due to

the non-relativistic normalization of the fields which is most appropriate for treating dark

matter direct detection [16].) Other operators at similar orders in the e↵ective expansion,

e.g. an electric dipole moment, can appear if CP violation occurs in the dark sector [67].

Phenomenological treatments of dark matter with some or all of these e↵ective interactions

have been considered in the literature, both independently and in the context of composite

models [66, 67, 115–123].

Detailed formulas for the interaction cross sections mediated by these interactions are

derived in the above references. We will not reproduce them here, but it is worth observing

that the scaling of the cross section with the choice of nuclear target can be dramatically

di↵erent [107, 124, 125], depending on which operator dominates. The per-nucleon interac-

tion cross section is expected to scale as µ2(J + 1)/J , Z2/A2, and Z4/A8/3 for the magnetic

moment, charge radius, and electromagnetic polarizability operators respectively, where µ

is the nuclear magnetic moment, J is the nuclear spin, and Z and A are the standard pro-

ton and atomic mass numbers. (Note that for a dark matter magnetic moment, the scaling

given is for the moment-moment interaction; there is also a magnetic moment-nuclear charge

interaction [77, 118], which scales as Z2/A2 like the charge radius.)

The value of these prefactors for several nuclear targets currently used in direct detection

experiments are tabulated in Table I, scaled so that the value for xenon is set to 1. Especially

dramatic di↵erences are seen for the coupling to the nuclear magnetic moment. We also note

that the electromagnetic polarizability interaction in principle has a very large uncertainty;

since the interaction contains two photons, scattering proceeds through a loop diagram,

so this interaction may be particularly sensitive to poorly-known nuclear matrix elements

involving excited states [79].

On the dark matter side, determination of the coe�cients of these operators requires a

non-perturbative calculation. We now turn to lattice calculations focused on photon direct-

detection operators.
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Example: Pion Like SIMP Model
provided that the fifth homotopy group of the coset space, ⇡5(G/H), is non-trivial. This

is satisfied when Nf � 3 for SU(Nc) and SO(Nc) gauge theories and Nf � 2 for Sp(Nc)

gauge theories.

Expanding the e↵ective-action to leading order in the pion fields, the interaction La-

grangian is

Lint = �
1

6f2
⇡

Tr
�
⇡2@µ⇡@µ⇡ � ⇡@µ⇡⇡@µ⇡

�
+

2Nc

15⇡2f5
⇡
✏µ⌫⇢� Tr (⇡@µ⇡@⌫⇡@⇢⇡@�⇡) + O(⇡6) .

(2.5)

The 5-point interactions coming from the WZW-action, which involve five di↵erent pion

fields, enable the 3 ! 2 process of the SIMP mechanism.

The SIMPlest model is that of the smallest particle content, which is the Sp(2) ' SU(2)

gauge group with Nf = 2, where the coset space is SU(4)/Sp(4) = SO(6)/SO(5) = S5,

with ⇡5(S5) = Z. The five pions are the minimum number of pions needed for the 3 ! 2

process via the WZW term. In what follows, this model will often be used as an example

to demonstrate the phenomenology of the proposal here.

Without an explicit mass term for the quarks, the pions are exact Goldstone-bosons,

and therefore massless. For the gauge theories considered here, an H-invariant quark mass

can be added to the Lagrangian,

Lmass =

8
>><

>>:

mqIij q̄iqj + h.c. , for SU(Nc)
1
2mqIijqiqj + h.c. , for SO(Nc)
1
2mqJ ijqiqj + h.c. , for Sp(Nc)

(2.6)

which induces a mass for all the pions ,

Le↵�mass =

(
�4f2

⇡m2
⇡ Tr⌃ + h.c. for SU(Nc), SO(Nc)

�4f2
⇡m2

⇡ TrJ⌃ + h.c. for Sp(Nc)

= �
m2

⇡

4
Tr⇡2 +

m2
⇡

12f2
⇡

Tr⇡4 + O(⇡6) . (2.7)

The H-invariant mass-term ensures that the chiral Lagrangian respects the unbroken sym-

metry. The pions transform as a non-trivial representation under H and thus are stable,

as they are the lightest fields with non-trivial quantum numbers. In what follows, we

will always assume a mass-term for the quarks that preserves some subgroup of the flavor

symmetry H, which acts to stabilize the pions.

The thermally averaged 3 ! 2 annihilation cross-section can be calculated from the

e↵ective 5-point interaction in Eq. (2.5),

h�v2i3!2 =
5
p

5

2⇡5x2
f

N2
c m5

⇡

f10
⇡

t2

N3
⇡

, (2.8)

where xf = m⇡/Tf ' 20 and Tf is the bath temperature at freeze-out. The factor of t2/N3
⇡

is combinatorial factor that depends on Nf and the choice of the confining gauge-theory;

further details are found in the Appendix of Ref. [3]. For a given Nf and Nc, obtaining
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The 5-point interactions coming from the WZW-action are key to obtaining the correct 
DM abundances in the model.



Take a U(1)D gauge field which has kinetic mixing with the U(1)Y gauge field 

the correct relic abundance via 3 ! 2 annihilation gives an explicit relationship between

m⇡ and f⇡.

There are strong constraints on large dark-matter self scatterings from bullet-cluster

obsersvations [14–16] and halo shape simulations [17, 18], which give roughly �scatter/mDM .
1 cm2/g. In terms of the pions, the self-scattering cross section can be calculated to leading

order using the 4-point interactions of the chiral Langrangian [Eqs. (2.5) and (2.7)],

�scatter =
m2

⇡

32⇡f4
⇡

a2

N2
⇡

, (2.9)

where the factor of a2/N2
⇡ is a combinatorial factor that depends on Nf and the choice of

the confining gauge-theory; further details can be found in the Appendix of Ref. [3].

Applying the constraints on self-interactions, that the pions produce the observed dark-

matter relic abundance, and assuming validity of chiral perturbation theory m⇡/f⇡ . 2⇡,

points to a preferred region of parameter space which is very similar to that of QCD:

m⇡ ⇠ 300 MeV, f⇡ ⇠ few ⇥ m⇡. (2.10)

This corresponds to the strongly interacting regime of the theory, where the strong dy-

namics can induce O(1) changes to the above; Eq. (2.10) should be thought of as a mere

proxy to the scales involved.

We note that the self-scattering cross sections predicted by Eq. (2.9) are of the right size

to reconcile discrepancies in N-body simulations with the observed small-scale structure,

such as the ‘core vs. cusp’ and ‘two big to fail’ puzzles [17–24]. Additionally, a recent study

of the Abell 3827 galaxy cluster showed evidence for self-interactions of dark matter [25, 26].

Ref. [25] claimed the self-scattering cross section should be �scatter/m = (1.7 ± 0.7) ⇥

10�4 cm2g�1
⇥ (tinfall/109 yr)�2, but a reanalysis in Ref. [26] finds �scatter/m = 1.5 cm2g�1

as the preferred value, similar to the rate needed to address the small-scale structure puzzles

and the rate expected from the SIMP mechanism.

3 Dark photon review

We consider a massive dark photon, which is the U(1)D gauge boson, that is kinetically

mixed with the hypercharge gauge boson. Extensively studied in the literature, here we

summarize the relevant parts of the dark photon Lagrangian as well as relevant experimen-

tal limits, including several new limits.

3.1 Kinetic mixing

We take a U(1)D gauge theory with a gauge field Aµ which has kinetic mixing with the

U(1)Y gauge field Bµ,

LA = �
1

4
Aµ⌫A

µ⌫
�

sin �

2
Bµ⌫A

µ⌫ +
1

2
m2

V AµA
µ . (3.1)

The gauge boson’s mass may arise either from a hidden-photon Higgs mechanism or the

Stückelberg trick.
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Stückelberg trick.
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:U(1)Y gauge field

Following the standard field redefinition one obtains:

After electroweak symmetry breaking occurs, Aµ becomes a mixture of the Z-boson
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The vector bosons couple to the current operators as

LD = AµJµ
EM + Zµ
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µ
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c�
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Z(s⇣ + sW t�c⇣) +
c⇣
c�

Jµ
D
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, (3.5)

For later convenience, we define the coupling strength of the dark photon to the electro-

magnetic and Z currents,

✏� ⌘ �cW c⇣t� and ✏Z ⌘ s⇣ + sW t�c⇣ . (3.6)

3.2 Experimental limits on dark photons

In order to understand the range of parameters viable for the SIMP mechanism, we now

assemble the current experimental limits on dark photons. There are two extreme cases of

the dark photon decays to be considered: (I) 100% branching fraction into Standard Model

particles (left panel of Fig. 1), and (II) 100% branching fraction into invisible particles (right

panel of Fig. 1).

Most of the limits presented in Fig. 1 are reproduced from Refs. [28–30]. However, a

few comments are in order. First, we do not consider the case of a dark photon lighter

than twice the dark pion. The reason is that if the coupling of this process is strong

enough to achieve kinetic equilibrium between the two sectors at the time of the freeze-

out, it would cause the annihilation rate of ⇡⇡ ! ⇡V to dominate over the ⇡⇡⇡ ! ⇡⇡

process required for the SIMP mechanism [8]. The constraint from electroweak precision

observables (labeled EWPO, brown) [29] is independent of how the dark photon decays and

is shown in both panels of Fig. 1. Another constraint relevant to both visible and invisible

decays comes from the search for a contact four-fermion operator at LEP II [31] (labeled

contact, orange), which was not discussed in Refs. [28–30]. This process is nominally

weaker than the limit from EWPO. We include it, however, since it is expected to improve

at the ILC by roughly an order of magnitude [32] (see Fig. 7).

Bounds from visible decays1 of a dark photon are shown in the left panel of Fig. 1.

Starting from the low mV region, the first constraint (labeled BaBar, red) is from a

1We define ‘visible decays’ to include decays into neutrinos in this paper.
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Dark Photon:



Problem: gauging the WZW term gives rise to the pion’s anomalous decay:

where a factor 4 represents the degrees of freedom of U(1)D charged mesons, K± and π±. On

the other hand, the scattering cross sections of dark mesons off the neutrinos, π+ν → π+ν

and the SM pion, π + π±
SM → π + π±

SM, are given by

〈σv〉scatt,ν =
4

Nπ
·
24πααDε2Zm

2
π

c2W s2Wm4
V

(

TF

mπ

)

,

〈σv〉scatt,π =
4

Nπ
·
[

192ε2γ +
192ε2Z
c2W s2W

1

4
(1− 2s2W )2

]

πααD
m2

π

m4
V

(

TF

mπ

)

.

(19)

From the condition,

n2
DM〈σv2〉3→2 < nSM〈σv〉scatt =

∑

$=e,µ

n$〈σv〉scatt,$ + nν〈σv〉scatt,ν + nπSM〈σv〉scatt,π, (20)

the larger mV , the stronger the lower bound on εγ gets, according to

αDεγ
(mπ

mV

)2
! 10−8. (21)

We present constraints on mV and εγ for several cases with different confining groups

in Fig. 1 and Fig. 2, where αD = 1/4π and αD = 0.01 were taken, respectively, and

that dark meson masses are assumed to be degenerate. For Nc = 4, the minimal Nc that

the SIMP mechanism works, only mπ % 0.45GeV is allowed because the perturbativity

condition, x ≡ mπ/F < 2π, and the self-interaction bound, σself/mπ " 1cm2/g, almost

coincide [3]. For Nc = 6 and Nc = 10, a wider range of dark meson masses are allowed

such as 0.37GeV < mπ < 0.56GeV and 0.26GeV < mπ < 0.8GeV, respectively, and x is

fixed by the DM relic density. In both cases, the upper bounds satisfy x = 2π and the lower

bounds satisfy x = 5.48 and 4.6, respectively.

We note that dark photon is taken to be heavier than dark mesons in order for the 3 → 2

annihilation to dominate over the ππ → γDγD annihilation. As a result, there appears a

lower bound, εγ ! 10−7 at mV = mπ, due to Eq. (21). On the other hand, the AAAV

anomalies induce the annihilation process such as π(k1)π(k2) → π(k3)e−(p1)e+(p2) through

off-shell dark photon, where momenta of particles in the process are explicitly written. The

interaction vertex contains εµνρσkν
1k

ν
2k

ρ
3v(p2)γ

σu(p1) term, which vanishes in non-relativistic

limit, k1 % k2 % (mπ,'0). Thus, the annihilation cross section for this process is estimated

as ααDε2γm
6
πT

2
F/(Nπm4

V F
6). Therefore, as compared to the annihilation cross section of

ππ → e−e+, which is smaller than the one for the 3 → 2 processes, the annihilation cross

11

This can be prevented by appropriate U(1)D charge assignments, but this does not 
prevent the dark meson self-annihilation:  

such as (mq)ijqiqj are allowed. In this case, dark quarks can be vector-like under U(1)D so the

model is automatically free from gauge anomalies. But, if U(1)D is unbroken, dark mesons

can be unstable in general, because dark mesons can decay fast into a pair of massless

dark photons γD, in the presence of AVV chiral anomalies. Even if the dark meson decays

from AVV anomalies can be forbidden by appropriate U(1)D charge assignments, such as

universal charges up to sign [16], we cannot prohibit a dark meson self-annihilation in the

form of ππ → πγD through AAAV anomalies1 [17]. Then, for the 3 → 2 annihilation to be

a dominant process for freeze-out, the dark gauge coupling for a unbroken U(1)D must be

extremely small so the gauge kinetic mixing does not give an enough scattering cross section

of dark mesons off the SM particles at freeze-out.

For our later discussion on SU(Nc) confining groups, we take the U(1)D compatible with

SIMP dark mesons to be spontaneously broken so that dark photon gets massive. For dark

photon mass mV > mπ, the ππ → πγD processes from AAAV anomalies are kinematically

forbidden. As will be discussed in the next section, in the presence of a gauge kinetic mixing

between dark photon and the SM U(1)Y , the off-shell processes, ππ → πγ∗
D → πe−e+, opens

up but it turns out to be suppressed as compared to the 3 → 2 processes.

For SO(Nc) and Sp(Nc) gauge groups, on the other hand, quarks in the fundamental

representation, belong to real and pseudo-real representations, respectively, so there is no

distinction between quarks and anti-quarks. As a result, only the Majorana mass terms are

allowed. Denoting Weyl spinor indices as α, β, · · · , gauge multiplet indices as r, s, · · · , and

flavor indices as i, j, · · · , dark quark mass terms appear as

mq
(rs)(ij)qαr,iqαs,j + h.c., (6)

in which mq
(rs)(ij) = mqδrsδij for SO(Nc) and mq

(rs)(ij) = mqJrsJ ij for Sp(Nc) gauge group,

where J ≡ iσ2 ⊗ I is an antisymmetric second rank tensor. In this case, dark quarks are

only chiral under U(1)D. Then, only after the U(1)D is broken spontaneously, dark quarks

obtain masses so does dark photon.

When dark quarks are chiral under U(1)D, a special care is needed. Suppose that a

chiral U(1)D is spontaneously broken and has a gauge kinetic mixing with the SM U(1)Y ,

as for the case with a vector-like U(1)D. First of all, there should be no gauge anomalies,

1 Effects of both AVV and AAAV anomalies are encoded in the gauged WZW term [10, 18].

6

A simple solution is to require the dark photon’s mass to be larger then the dark pion’s


