Mili-Charged Strongly Interacting Dark Matter

A Quick Review of Dark Matter

Two Key Properties:

-Dark matter must be stable over more than the lifetime of the universe.

respect to the SM.

- -Dark matter must essentially also both be electrically neutral and effectively neutral with

Why Strongly Interacting DM?

-Stability: The stability of composite dark matter candidates is an automatic consequence of the accidental global flavour symmetries of the underlying theory.


-Naturalness: Just like in QCD, once a non-Abelian theory confines, a new scale appears in the theory, allowing for an effective theory description of the low energy theory.

-Neutrality: If constituents transform under (part of) the SM gauge symmetries, confinement can lead to colour, weak, and charge-neutral dark hadrons that are idea DM candidates.

-Suppressed interactions: The effective theory below the confinement scale can be expressed in terms of higher dimensional operators involving DM fields and SM fields, suppressed by powers of the DM confinement scale.

-Self-interactions: Strongly-coupled theories naturally have strong self-interactions among the Dark mesons and baryons. These interactions may be responsible for addressing the observed galactic structure anomalies and DM abundance.

-New observables: A rich spectrum of dark hadrons from a confined dark non-Abelian theory would provide a plethora of experimental targets.

Many Possible Types of Strongly Interacting Dark Matter

- -Meson DM I: Pion-like
- -Meson DM II: Quarkonium-like (at least one heavy dark fermion)
- -Baryon-like DM
- -Dark Glueballs.

How can DM be mili-charged?

Example: DM Candidates with Electromagnetically Charged Constituents.

Coupling to the photon is proportional to:

 $\langle \chi(p') | j^{\mu}_{\rm EM} | \chi$

- The form factor ($F(q^2)$) can be described in terms of effective field theory operators:
- Magnetic Moment
- Charge Radius

Electromagnetic Polarizability: $\mathcal{L} \supset \frac{1}{\Lambda^3} \bar{\chi}$

Where χ is a fermionic DM candidate and ϕ is a spin-zero bosonic candidate.

$$\chi(p)\rangle = F(q^2)q^{\mu}$$

 $\mathcal{L} \supset \frac{1}{\Lambda} \bar{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu}$

$$\mathcal{L} \supset \frac{1}{\Lambda^2} \bar{\chi} \gamma^{\nu} \chi \partial^{\mu} F_{\mu\nu}, \quad \frac{1}{\Lambda^2} \phi^{\dagger} \phi v^{\nu} \partial^{\mu} F_{\mu\nu}$$

$$\chi \chi F_{\mu\nu}F^{\mu\nu}, \quad \frac{1}{\Lambda^3}\phi^{\dagger}\phi F_{\mu\nu}F^{\mu\nu}$$

Example: Pion Like SIMP Model

$$\mathcal{L}_{\text{int}} = -\frac{1}{6f_{\pi}^2} \operatorname{Tr} \left(\pi^2 \partial^{\mu} \pi \partial_{\mu} \pi - \pi \partial^{\mu} \pi \pi \partial_{\mu} \pi \right)$$

The 5-point interactions coming from the WZW-action are key to obtaining the correct DM abundances in the model.

 $\pi) + \frac{2N_c}{15\pi^2 f_{\pi}^5} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left(\pi \partial_{\mu} \pi \partial_{\nu} \pi \partial_{\rho} \pi \partial_{\sigma} \pi \right) + \mathcal{O}(\pi^6) \,.$

$$\mathcal{L}_{\mathcal{A}} = -\frac{1}{4} \mathcal{A}_{\mu\nu} \mathcal{A}^{\mu\nu} - \frac{\sin \chi}{2} B_{\mu\nu} \mathcal{A}^{\mu\nu} + \frac{1}{2} m_V^2 \mathcal{A}_{\mu} \mathcal{A}^{\mu}.$$

 \mathcal{A}_{μ} :U(1)_D gauge field

Following the standard field redefinition one obtains:

$$\mathcal{L}_{D} = A_{\mu}J_{EM}^{\mu} + Z_{\mu} \left[c_{W}s_{\zeta}t_{\chi}J_{EM}^{\mu} + (c_{\zeta} - s_{W}t_{\chi}s_{\zeta})J_{Z}^{\mu} - \frac{s_{\zeta}}{c_{\chi}}J_{D}^{\mu} \right] + V_{\mu} \left[J_{EM}^{\mu} (-c_{W}c_{\zeta}t_{\chi}) + J_{Z}^{\mu}(s_{\zeta} + s_{W}t_{\chi}c_{\zeta}) + \frac{c_{\zeta}}{c_{\chi}}J_{D}^{\mu} \right],$$

Dark Photon: $V^{\mu} = -$

Take a $U(1)_D$ gauge field which has kinetic mixing with the $U(1)_Y$ gauge field

 B_{μ} :U(1)_Y gauge field

$$-\frac{s_{\zeta}}{c_{\chi}}Z^{\mu} + \frac{c_{\zeta}}{c_{\chi}}\mathcal{A}^{\mu}$$

Problem: gauging the WZW term gives rise to the pion's anomalous decay:

 $\pi\pi$

This can be prevented by appropriate $U(1)_D$ charge assignments, but this does not prevent the dark meson self-annihilation:

A simple solution is to require the dark photon's mass to be larger then the dark pion's

$$\rightarrow \gamma_D \gamma_D$$

$\pi\pi \to \pi\gamma_D$

