東京大学

# Non－equilibrium theory of non－relativistic pairs inside an environment 

Tobias Binder

## System



Consider heavy non-relativistic pairs inside a plasma environment:

- Qarkonia in a quark-gluon plasma (QGP)
- Heavy WIMPs in the early Universe plasma
- ...

See also "Quarkonia meet Dark Matter": https://indico.ipmu.jp/event/389/overview

## Quantum mechanical effects: Positronium

>Bound-state decay and Sommerfeld-enhanced annihilation:
(for s-wave)
$\Gamma_{n}=(\sigma v)_{0} \times\left|\psi_{n}(r=0)\right|^{2}$
J. Pirenne 1946, J. Wheeler 1946
$(\sigma v)^{\text {ann }}=(\sigma v)_{0} \times|\psi(r=0)|^{2}$
$\propto(\sigma v)_{0}(\alpha / v)$, for $v<\alpha$.

A. Sommerfeld 1931, A. Sakharov 1948
> Bound-state formation:



## Massive mediator

For massive mediators, QM effects play a role if the range of the attractive potential is larger than the Bohr radius, or, equivalently: $\mathrm{m}_{\text {mediator }} \lesssim \alpha m_{\chi}$

Attractive Yukawa potential

WIMP


Plane-wave initial state
$m_{\text {mediator }} \gg \alpha m_{\chi}$
"Heavy WIMP"

$m_{\text {mediator }} \lesssim \alpha m_{\chi}$


Modification of annihilation cross section has consequences for:

- Prediction of DM relic abundance (Overclosure bound)
- Predicted flux of SM particles from DM annihilation in, e.g., the galactic center (Indirect detection)
[Seminal works by J. Hisano et al. 2006+]


## Prime example: Wino neutralino



## Line gamma rays from GC of Wino/Higgsino

CTA Prospect for Wino DM (Rinchiuso, Slatyer, et al (20))
(Resummation of Sudalov double log, continuum emission, endpoint photons, energy resolution of CTA are included.)


The precise evaluation of thermal relic abondance is important since the $x$ section to line gamma is quite sensitive to wino mass.

Image credits: M. Vollmann


$$
\chi^{0}, \chi^{ \pm}
$$

[see talk by J.
Hisano, M. Beneke]

$$
\Delta m_{+}=\underset{\substack{\text { (EW radiative } \\ \text { correction) }}}{166 \mathrm{MeV}}+O\left(\frac{v^{4}}{M^{3}}\right)
$$



## + bound states



## Finite Temperature



## Data




Sequential melting of b-bbar bound states inside QGP plasma observed.

CMS collaboration,
Phys.Lett. B790 (2019) 270-293

## Theory

## Heavy Quarkonia in QGP

- Matsui \& Satz 1986
> J/Psi suppression in QGP due to screening effect
> In-medium potential from 2 Polyakov loop (Wilson line)

$$
V(r)=-\frac{\alpha}{r} e^{-m_{D} r}, m_{D} \propto g T
$$

- Laine et al. 2007
> 4 Polyakov loop method



## Heavy DM in primordial plasma

- Cirelli et al. 2007 (Minimal DM)
> Debye screened
Sommerfeld enhancement
> (Wino mass lowered)
- Bödeker \& Laine 2012
> First dynamical formulation based on "linear response theory"
[see follow-ups by Biondini \& Kim \& Laine]


## Non-equilibrium QFT approach

In-medium potential + dynamics from Keldysh-Schwinger-Formalism

Scheme:
I Non-relativistic effective action

$$
S_{\mathrm{NR}}[\eta, \xi]=\int_{x \in \mathcal{C}} \eta^{\dagger}\left[i \partial_{t}+\frac{\Delta}{2 M}\right] \eta+\xi^{\dagger}\left[i \partial_{t}-\frac{\Delta}{2 M}\right] \xi+\int_{x, y \in \mathcal{C}} i \frac{g^{2}}{2} \underbrace{J(x) D(x, y) J(y)}_{\text {"potential" }}+i \underbrace{O^{\dagger}(x) \Gamma(x, y) O(y)}_{\text {"annihilation" }}, \quad J \equiv \eta^{\dagger} \eta+\xi^{\dagger} \xi, O \equiv \xi^{\dagger} \eta
$$

II Number density equation from EoM of 2-point correlation function
III Resummation of 4-point correlator

[TB, Covi, Mukaida 18]
Recover in-medium potential.

## Annihilation/decay at finite temperature

> Consistent with Boltzmann equations in zero temperature limit

Finite temperature corrections modify two-particle spectrum
> Formalism advantages
$\vee$ Sommerfeld enhanced annihilation
$\checkmark$ ALL bound states included
$\checkmark$ Finite temperature corrections
$\checkmark$ Simple number density equation

## Limitation

- Hard-Thermal-Loop approximation (ok for $|\mathrm{E}|<\mathrm{T}$ )
- Ionization equilibrium

$$
\begin{aligned}
& \dot{n}+3 H n=-\left.2(\sigma v)_{0} G_{4}^{++--}\right|_{\mathrm{eq}}\left[e^{\beta 2 \mu}-1\right], \\
& \left.G_{4}^{++--}\right|_{\mathrm{eq}} \propto \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{(2 \pi)} e^{-\beta E} \rho(E) .
\end{aligned}
$$

$$
V(r)=-\alpha m_{D}-\frac{\alpha}{r} e^{-m_{D} r}-i \alpha T \phi\left(m_{D} r\right)
$$

Finite temperature


## Open Quantum system treatment

Lindblad eqaution:

$$
\frac{d \rho}{d t}=-i[H, \rho]+\sum_{i}\left(C_{i} \rho C_{i}^{\dagger}-\frac{1}{2}\left\{C_{i}^{\dagger} C_{i}, \rho\right\}\right)
$$

For quarkonia (QCD), these are coupled singlet/octet equations:

$$
\begin{aligned}
\frac{d \rho_{s}(t ; t)}{d t}= & -i\left[h_{s}, \rho_{s}(t ; t)\right]-\Sigma_{s}(t) \rho_{s}(t ; t)-\rho_{s}(t ; t) \Sigma_{s}^{\dagger}(t)+\Xi_{s o}\left(\rho_{o}(t ; t), t\right) \\
\frac{d \rho_{o}(t ; t)}{d t}= & -i\left[h_{o}, \rho_{o}(t ; t)\right]-\Sigma_{o}(t) \rho_{o}(t ; t)-\rho_{o}(t ; t) \Sigma_{o}^{\dagger}(t)+\Xi_{o s}\left(\rho_{s}(t ; t), t\right) \\
& +\Xi_{o o}\left(\rho_{o}(t ; t), t\right)
\end{aligned}
$$

Projection of Lindblad equation, gives bound state evolution

$$
\frac{\partial}{\partial t} f_{n l}(\boldsymbol{x}, \boldsymbol{k}, t)+\frac{\boldsymbol{k}}{2 M} \cdot \nabla_{\boldsymbol{x}} f_{n l}(\boldsymbol{x}, \boldsymbol{k}, t)=\underset{\substack{\mathcal{C}_{n l}^{+}(\boldsymbol{x}, \boldsymbol{k}, t) \\ \text { Recombination }}}{\mathcal{C}_{n l}^{-}(\boldsymbol{x}, \boldsymbol{k}, t)}
$$

Ok for $\mathrm{T} \ll$ Bohr momentum.

## Intermediate summary

- Sommerfeld-enhanced annihilation and bound state decay at finite T,
-     + Formation and dissociation of bound states at finite T,
-     + e.g., fine and hyperfine splitting at finite T,
- Full out-of-equilibrium.

How can we theoretically describe all that at once?
Or, in other words:
i) which EFT and ii) which non-equilibrium quantum field theory?

## Previous limitations:

- Open quantum system:

T << Bohr momentum

- 4 Plyakov + Linear response theory: Linear close to chemical equilibrium
- Non-rel. EFT (w/o ultrasoft) + Keldysh-Schwinger: Ionization equilibrium T>>E


## pNREFT

## Relativistic QED:

[Dirac 1928]

$$
\mathcal{L}=i \bar{\chi} \gamma^{\mu} \partial_{\mu} \chi-m \bar{\chi} \chi-g \bar{\chi} \gamma^{\mu} \chi A_{\mu}-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\mathcal{L}^{\mathrm{env}}[A],
$$

## Non-relativistic QED:

[Caswell \& Lepage 1986, Labelle 1992]

$$
\mathcal{L}^{\mathrm{NR}}=\eta^{\dagger}\left[i D_{0}+\frac{D^{2}}{2 m_{e}}\right] \eta+\xi^{\dagger}\left[i D_{0}-\frac{D^{2}}{2 m_{e}}\right] \xi+\int \frac{g^{2}}{2} \underbrace{J^{0} V J^{0}}_{\text {"potential" }}+\ldots
$$

## Potential non-relativistic QED:

[Brambilla et al. 2000 +]

$$
\begin{aligned}
\mathcal{L}^{\mathrm{pNR}} & =\int \mathrm{d}^{3} r \operatorname{Tr}\left\{O^{\dagger}(\mathbf{x}, \mathbf{r}, t)\left[i \partial_{t}-h+\mathbf{r} \cdot g \mathbf{E}(\mathbf{x}, t)+\vec{\mu} \cdot g \mathbf{B}(\mathbf{x}, t)\right] O(\mathbf{x}, \mathbf{r}, t)\right\} \\
& -\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\mathcal{L}^{\mathrm{env}}[A]
\end{aligned}
$$

## Non-equilibrium pNRQFT

## Two-body field two-point function:

$G_{o s s^{\prime} o^{\prime}}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right) \equiv\left\langle T_{\mathcal{C}} O_{o s}(x, \mathbf{r}) O_{s^{\prime} o^{\prime}}^{\dagger}\left(y, \mathbf{r}^{\prime}\right)\right\rangle$

From path integral, we derive two-body field two-point function EoM:

$$
\begin{align*}
\left(i \partial_{x^{0}}-h_{x}\right)_{o \bar{o}} G_{\bar{o} s s^{\prime} o^{\prime}}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right) & =i \delta_{s s^{\prime}} \delta_{o o^{\prime}} \delta_{\mathcal{C}}^{4}(x, y) \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
& -g r_{i}\left\langle E_{i}(x)\right\rangle G_{o s s^{\prime} o^{\prime}}^{0}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right)-g \mu_{i}^{o \bar{o}}\left\langle B_{i}(x)\right\rangle G_{\bar{o} s s^{\prime} o^{\prime}}^{0}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right) \\
& -i g^{2} \int_{\mathcal{C}} \mathrm{d}^{4} w \mathrm{~d}^{3} \bar{r} G_{o s \bar{s}^{\prime} \bar{o}^{\prime}}^{0}(x, w ; \mathbf{r}, \overline{\mathbf{r}}) r_{i} \bar{r}_{j}\left\langle T_{\mathcal{C}} E_{i}(x) E_{j}(w) O_{\bar{o}^{\prime} \bar{s}^{\prime}}(w, \overline{\mathbf{r}}) O_{s^{\prime} o^{\prime}}^{\dagger}\left(y, \mathbf{r}^{\prime}\right)\right\rangle \\
& -i g^{2} \int_{\mathcal{C}} \mathrm{d}^{4} w \mathrm{~d}^{3} \bar{r} G_{o s \bar{s}^{\prime} \bar{o}^{\prime}}^{0}(x, w ; \mathbf{r}, \overline{\mathbf{r}})\left(\mu_{i}\right)^{\bar{o}^{\prime} \bar{o}}\left(\bar{\mu}_{j}\right)^{\bar{o} \bar{o}}\left\langle T_{\mathcal{C}} B_{i}(x) B_{j}(w) O_{\overline{\sigma^{\prime}}}(w, \overline{\mathbf{r}}) O_{s^{\prime} o^{\prime}}^{\dagger}\left(y, \mathbf{r}^{\prime}\right)\right\rangle, \\
\left(-i \partial_{y^{0}}-h_{y}^{\prime}\right)_{\bar{o} o^{\prime}} G_{o s s^{\prime} \bar{o}}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right) & =i \delta_{s s^{\prime}} \delta_{o o^{\prime}} \delta_{\mathcal{C}}^{4}(x, y) \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \quad(2)  \tag{2}\\
& -g r_{i}^{\prime}\left\langle E_{i}(y)\right\rangle G_{o s s^{\prime} o^{\prime}}^{0}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right)-g\left(\mu_{i}^{\prime}\right)^{\overline{o_{o}^{\prime}}}\left\langle B_{i}(y)\right\rangle G_{o s s^{\prime} \bar{o}}^{0}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right) \\
& -i g^{2} \int_{\mathcal{C}} \mathrm{d}^{4} w \mathrm{~d}^{3} \bar{r}\left\langle T_{\mathcal{C}} O_{o s}(x, \mathbf{r}) O_{\bar{s}^{\prime} \bar{o}^{\prime}}^{\dagger}(w, \overline{\mathbf{r}}) E_{j}(w) E_{i}(y)\right\rangle \bar{r}_{j} r_{i}^{\prime} G_{\bar{o}^{\prime} \bar{s}^{\prime} s^{\prime} o^{\prime}}^{0}\left(w, y ; \overline{\mathbf{r}}, \mathbf{r}^{\prime}\right) \\
& \left.-i g^{2} \int_{\mathcal{C}} \mathrm{d}^{4} w \mathrm{~d}^{3} \bar{r}\left\langle T_{\mathcal{C}} O_{o s}(x, \mathbf{r}) O_{\bar{s}^{\prime} \bar{o}}^{\dagger}(w, \overline{\mathbf{r}}) B_{j}(w) B_{i}(y)\right\rangle\right\rangle\left(\bar{\mu}_{j}\right)^{\bar{\sigma} \bar{o}}\left(\mu_{i}^{\prime}\right)^{\bar{\sigma} \overline{o^{\prime}}} G_{\bar{o}^{\prime} \bar{s}^{\prime} s^{\prime} o^{\prime}}^{0}\left(w, y ; \overline{\mathbf{r}}, \mathbf{r}^{\prime}\right) .
\end{align*}
$$

Equivalent representation of the full path integral in terms of its infinitely coupled field moments (correlation functions).

## Closure of correlation function hierarchy



- Truncation at the two-point function level. Note bound states included!
- Dressing of free correlators takes into account some higher terms which are otherwise neglected by truncation.
- Information of environment implicitly contained in gauge field correlators.


## Splitting the information

## Keldysh-Schwinger formalism (closed time-path contour)


1.) Statistical component:

$$
G^{+-}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right)
$$

2.) Retarded component:

$$
G^{R}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right)=G^{++}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right)-G^{+-}\left(x, y ; \mathbf{r}, \mathbf{r}^{\prime}\right)
$$

In total there are 4 (6) coupled differential equations, which cover the dynamics and the constraint of the statistics and the spectrum (full information). Note the difference to the standard Kadanoff-Bayam equations.

## Statistical component

"Kadanoff-Bayam Ansatz" for two-body field statistical two-point functions:
$G^{+-}\left(T, R, P ; \mathbf{r}, \mathbf{r}^{\prime}\right)=f\left(T, R, M+P^{0}\right) G^{\rho}\left(T, R, P ; \mathbf{r}, \mathbf{r}^{\prime}\right)$,
$G^{-+}\left(T, R, P ; \mathbf{r}, \mathbf{r}^{\prime}\right)=\left[1+f\left(T, R, M+P^{0}\right)\right] G^{\rho}\left(T, R, P ; \mathbf{r}, \mathbf{r}^{\prime}\right)$.
Inserting this into one of the statistical equations (dynamical, Wigner transf., gradient exp...)
"Quantum Boltzmann equation" for two-body states

$$
\begin{aligned}
& \left(\partial_{T}+\frac{\mathbf{p}}{M} \cdot \vec{\nabla}_{R}\right) f\left(T, R, M+P^{0}\right) \int \mathrm{d}^{3} r G^{\rho}(T, R, P ; \mathbf{r}, \mathbf{r})= \\
& -\int \frac{\mathrm{d}^{4} K}{(2 \pi)^{4}} \int \mathrm{~d}^{3} r \int \mathrm{~d}^{3} \bar{r} G^{\rho}(T, K ; \mathbf{r}, \overline{\mathbf{r}}) g^{2} r_{i} \bar{r}_{j} G^{\rho}(T, R, P ; \overline{\mathbf{r}}, \mathbf{r}) E_{i j}^{\rho}(P-K) \times \\
& {\left[f\left(M+P^{0}\right)\left[1+f\left(M+K^{0}\right)\right]\left[1+f_{E}\left(P^{0}-K^{0}\right)\right]-\left[1+f\left(M+P^{0}\right)\right] f\left(M+K^{0}\right) f_{E}\left(P^{0}-K^{0}\right)\right]}
\end{aligned}
$$

+ magnetic dipole contributions

For spin-unpolarized medium, mean field terms canceled. Remaining interactions:
Bound state formation, dissociation, Bremsstrahlung, higher emissions, full finite $T$ corrections inside spectral functions.

[TB 21]

## Recovery of open quantum system treatment



Assumption:
Vacuum two-body
field spectral function,
OK for $\mathrm{E} \gtrsim m_{D}$

Open quantum system (OQS) treatment


OQS assumes "Bound state propagator" can be treated as in vacuum (standard Schrödinger wave functions) + factorization of sub-system and environmental density matrix.

## Non-Abelian electric field correlator at NLO

## NEW: Singlet-adjoint transition in (any higher rep.) of SU(N):



Directly via Lindblad equation, or, vacuum limit of spectral function in statistical equation.
[TB et al. 21, see
B. Hitschfeld talk]

SU(N) Electric dipole correlator for singlet-adjoint transition.
(Other transitions may involve different Wilson lines)

## Non-Abelian Electric Field Correlator at NLO



Gauge invariance, infrared and collinear safety proven.

## Enhanced rates inside plasma

$$
\begin{aligned}
\left(\sigma v_{\mathrm{rel}}\right)_{\mathscr{B}}^{\mathrm{LO}+\mathrm{NLO}}=\left(\sigma v_{\mathrm{rel}}\right)_{\mathscr{B}}^{\mathrm{LO}} \times[1 & +\alpha N_{c} R_{g}^{T=0}(\mu / \Delta E)+\alpha N_{c} R_{g}^{T \neq 0}(\Delta E / T) \\
& \left.+\alpha N_{f} R_{f}^{T=0}(\mu / \Delta E)+\alpha N_{f} R_{f}^{T \neq 0}(\Delta E / T)\right]
\end{aligned}
$$



## Flipped hierarchy of rates inside plasma



IPMNU'

## Full treatment requires dressed retarded

$$
\begin{aligned}
& \left(\partial_{T}+\frac{\mathbf{p}}{M} \cdot \vec{\nabla}_{R}\right) f\left(T, R, M+P^{0}\right) \int \mathrm{d}^{3} r G^{\rho}(T, R, P ; \mathbf{r}, \mathbf{r})= \\
& -\int \frac{\mathrm{d}^{4} K}{(2 \pi)^{4}} \int \mathrm{~d}^{3} r \int \mathrm{~d}^{3} \bar{r} G^{\rho}(T, K ; \mathbf{r}, \overline{\mathbf{r}}) g^{2} r_{i} \bar{r}_{j} G^{\rho}(T, R, P ; \overline{\mathbf{r}}, \mathbf{r}) E_{i j}^{\rho}(P-K) \times \\
& {\left[f\left(M+P^{0}\right)\left[1+f\left(M+K^{0}\right)\right]\left[1+f_{E}\left(P^{0}-K^{0}\right)\right]-\left[1+f\left(M+P^{0}\right)\right] f\left(M+K^{0}\right) f_{E}\left(P^{0}-K^{0}\right)\right]}
\end{aligned}
$$

+ magnetic dipole contributions
$\mathrm{G}^{\rho}=2 \operatorname{Im}\left[i G^{R}\right]$
$\left(2 P^{0}+\frac{-2 \mathbf{p}^{2}+\partial_{R}^{2} / 2}{2 M}+\frac{\nabla_{\mathbf{r}}^{2}+\nabla_{\mathbf{r}^{\prime}}^{2}}{2 \mu_{r}}-\left[V_{\mathrm{eff}}(r)+V_{\mathrm{eff}}\left(r^{\prime}\right)\right]+i \epsilon\right) G^{R}\left(T, R, P ; \mathbf{r}, \mathbf{r}^{\prime}\right)=i 2 \delta^{3}\left(r-r^{\prime}\right)$
$-g \mu_{i}\left\langle B_{i}(x)\right\rangle G^{R}\left(T, R, P ; \mathbf{r}, \mathbf{r}^{\prime}\right)-g \mu_{i}^{\prime}\left\langle B_{i}(y)\right\rangle G^{R}\left(T, R, P ; \mathbf{r}, \mathbf{r}^{\prime}\right)$
$-g\left(r_{i}\left\langle E_{i}(x)\right\rangle+r_{i}^{\prime}\left\langle E_{i}(y)\right\rangle\right) G^{R}\left(T, R, P ; \mathbf{r}, \mathbf{r}^{\prime}\right)$
$-i \int \mathrm{~d}^{3} \bar{r}\left[\Sigma_{i j}^{R, E}(T, R, P ; \mathbf{r}, \overline{\mathbf{r}}) r_{i} \bar{r}_{j} G^{R}\left(T, R, P ; \overline{\mathbf{r}}, \mathbf{r}^{\prime}\right)+G^{R}(T, R, P ; \mathbf{r}, \overline{\mathbf{r}}) \bar{r}_{j} r_{i}^{\prime} \Sigma_{i j}^{R, E}\left(T, R, P ; \overline{\mathbf{r}}, \mathbf{r}^{\prime}\right)\right]$
$-i \int \mathrm{~d}^{3} \bar{r}\left[\Sigma_{i j}^{R, B}(T, R, P ; \mathbf{r}, \overline{\mathbf{r}}) \mu_{i} \bar{\mu}_{j} G^{R}\left(T, R, P ; \overline{\mathbf{r}}, \mathbf{r}^{\prime}\right)+G^{R}(T, R, P ; \mathbf{r}, \overline{\mathbf{r}}) \bar{\mu}_{j} \mu_{i}^{\prime} \Sigma_{i j}^{R, B}\left(T, R, P ; \overline{\mathbf{r}}, \mathbf{r}^{\prime}\right)\right]$.


## Summary Generalizations / Consistency checks

- We performed many consistency checks with previous literature results, under approximations/limits/neglecting terms in our more general equations.
- DM bound state formation/dissociation at finite temperature now fully available. I.e., we can for the first time describe DM decoupling from ionization equilibrium including full finite temperature corrections.
- In vacuum limit of the retarded correlator, the equations reduce to the open quantum system treatment, as established in Quarkonia and Dark matter.
- Vacuum limit of the retarded correlator contains fine and hyper fine corrections to the energy levels.
- Interesting cosmological application: free electron evolution during CMB decoupling, spin-flip temperature evolution at the cosmic Dawn (remember we have anomaly discovery in the latter, while the Hubble tension in the former).


## There is even more...

- Bose Einstein condensation
- Critical gauge field values can lead to spontaneous symmetry breaking of $U(1)$ (local phases become global, spontaneously)
- Gives rise to phenomena like superconductivity, ferromagnetism, ...
- In general, the one point function of the two body field depends on

TWO LOCAL PHASES
(where one is known in quarkonia, as the ultra-soft gauge transformation)

$$
\langle O(x, \mathbf{r})\rangle \sim \rho e^{-i \phi_{1}(t, \mathbf{x})-i \phi_{2}(t, \mathbf{r})}
$$

## Superconductivity (?)

Self-consistent fully quantum EoMs of electric and magnetic field:

$$
\begin{align*}
& \langle\mathbf{E}(x)\rangle=\int \mathrm{d}^{3} r \operatorname{Tr}\left[\left\langle O^{\dagger}(x, \mathbf{r}) \mathbf{r} g O(x, \mathbf{r})\right\rangle\right]+\ldots  \tag{1}\\
& \langle\mathbf{B}(x)\rangle=-\int \mathrm{d}^{3} r \operatorname{Tr}\left[\left\langle O^{\dagger}(x, \mathbf{r}) \mu g O(x, \mathbf{r})\right\rangle\right]+\ldots \tag{2}
\end{align*}
$$

Vanishing E and B field (Meissner effect) if $\phi_{2}$ turns (spontaneously) global (infinite correlation length, superconductivity (?)). Ferromagnetic effects may be related to $\phi_{1}$.

Equations may allow to study the DYNAMICAL FORMATION and EXISTENCE of extreme phases, such as a FERROMAGNETIC SUPERCONDUCTING BOSE-EINSTEIN CONDENSATE. Currently, we dont claim the co-existance or possible formation of such kind of fascinating material. Need to solve our equations!

## Summary and Conclusion

- Potential non-relativistic effective field theory is powerful, allows to reduce the complexity of NR EFT to the essential information of non-relativistic N-body fields.
- Combined with path-integral based non-equilibrium QFT, our resulting equations generalize DM decoupling description, Quarkonia transport, may have interesting other cosmological application, and seem to be able to even cope with phase transitions.
$\rightarrow$ Existence of extreme phases + numerical proof of dynamical formation possible
- Scheme for any (Lagrangian based) theory:

Start from a given Lagrangian theory, derive the non-relativistic effective Lagrangian~1 cite\{CASWELL1986437, Labelle:1992hd\}, project it to the desired N-body state and multipole expand the interaction fields which leads to potential-non-relativistic effective field theory-Icite\{Pineda:1997bj,Brambilla:1999xf,Brambilla:2004jw\}, and follow the procedure presented here to derive dynamical and spectral functions in the KeldyshSchwinger~1cite\{Schwinger:1960qe,Keldysh:1964ud\} non-equilibrium quantum field theory formalism. The latter assumes that interactions are adiabatically switched on, however, initial memory effects can also be included by appropriately extending the time contour integration (e.g., needed for MBL theory). Note that this formalism can deal with non-hermitian potentials since it is based on the path integral.

## Heavy Dark Matter candidates

[see talk by J. Hisano]

## Supersymmetric standard model (SUSY SM) <br> Wino ( $I=1, S=1 / 2$ ), Higgsino ( $I=1 / 2, S=1 / 2$ )

- Extra-dimensional models

Kaluza-Klain weak gauge bosons ( $(=1, S=1$ )

- Neutrino mass models
- Scotogenic models
- Extended Higgs sector models
- Inert Higgs models
- Minimal dark matter models
- automatically stable fermion ( $I=2, S=1 / 2$ )
- 


## SUSY SM before LHC

| SUSY GUTs ~ $10^{16} \mathrm{GeV}$ | Motivation of Low-scale SUSY (<~1TeV): <br> - Hierarchy problem <br> - WIMP dark matter (R parity) <br> - Gauge coupling unification (SUSY GUTs) |
| :---: | :---: |
|  | Shortcoming of SUSY : <br> - FCNC and CP problems <br> - Gravitino problem in nucleosynthsis |
| SUSY SM @ < O(1) TeV | - $\mathrm{D}=5$ proton decay in SUSY GUTs |
|  | - 125 GeV Higgs mass (after 2012) |

## SUSY SM after LHC

Motivation of mini-split SUSY ( $\sim$ O( $\left.10^{2-3}\right) \mathrm{TeV}$ ).

- Solution of following problems
- FCNC and CP problems
- Gravitino problem in nucleosynthsis
- $\mathrm{D}=5$ proton decay in SUSY GUTs
- 125 GeV Higgs mass
- Easy model building of SUSY breaking


## SUSY SM @ O(10 $0^{2-3}$ ) TeV by anomaly mediation

- WIMP dark matter (R parity) Wino/Higgsino
- Improved gauge coupling unification

Phenomenologically successful model! (Except for Naturalness)

## Fixed NLO vs. EFT treatment



