Beta-beating measurement and correction during the fall of the PSB injection chicane

Update on R3 measurements of LHC2A

F. Antoniou, F. Asvesta, H. Bartosik, C. Bracco, E. Maclean, B. Mikulec, GP Di Giovanni, T. Prebibaj, E. Renner

Space Charge WG Meeting – 23/06/2021
Overview

• LHC25: current status
• Improving the machine performance
• Measurement and correction of the beta-beating with k-modulation
• Impact on intensity
• Impact on emittance
• Summary and Next Steps
Overview

• **LHC25: current status**

• **Improving the machine performance**

• **Measurement and correction of the beta-beating with k-modulation**

• **Impact on intensity**

• **Impact on emittance**

• **Summary and Next Steps**
LHC25: current status

- Tune control:
 - **until C300:** tune perturbations as a result from both injection chicane optics distortion and regulation (which was improved considerably)
 - **after C300:** systematic +0.01 shift in Q_V between set (4.43) and measured (4.44) values

Constant set tune at 4.38/4.43
• Tune control:
 - **until C300**: tune perturbations as a result from both injection chicane optics distortion and regulation (which was improved considerably)
 - **after C300**: systematic +0.01 shift in Q_v between set (4.43) and measured (4.44) values
• Tune evolution along the cycle: 4.38/4.4 at $C277$ to 4.17/23 at $C475$
LHC25: current status

- **Tune control:**
 - **until C300:** tune perturbations as a result from both injection chicane optics distortion and regulation (which was improved considerably)
 - **after C300:** systematic +0.01 shift in Q_v between set (4.43) and measured (4.44) values

- **Tune evolution along the cycle:** 4.38/4.4 at $C277$ to 4.17/23 at $C475$

- **Resonance correctors (Foteini):**
 - QNOs (half-integer) are not operationally used because in the current configuration they seem to enhance the vertical tails
 - Sextupoles (XNO, XSK) and octupoles (ONO) are ramped up and down based on the resonance crossing
LHC25: current status

- Tune control:
 - **until C300**: tune perturbations as a result from both injection chicane optics distortion and regulation (improved considerably, see here)
 - **after C300**: systematic +0.01 shift in Q_v between set (4.43) and measured (4.44) values

- Tune evolution along the cycle: 4.38/4.4 at C_{277} to 4.17/23 at C_{475}

- Resonance correctors (**Foteini**):
 - QNOs (half-integer) are not operationally used because in the current configuration they seem to enhance the vertical tails
 - Sextupoles (XNO, XSK) and octupoles (ONO) are ramped up and down based on the resonance crossing

- Brightness curve (measurements performed by **Hannes and Foteini**)
LHC25: current status

- **Tune control:**
 - **until C300:** tune perturbations as a result from both injection chicane optics distortion and regulation (which was improved considerably)
 - **after C300:** systematic +0.01 shift in Q_v between set (4.43) and measured (4.44) values

- **Tune evolution along the cycle:** 4.38/4.4 at $C277$ to 4.17/23 at $C475$

- **Resonance correctors (Foteini):**
 - QNOs (half-integer) are not operationally used because in the current configuration they seem to enhance the vertical tails
 - Sextupoles (XNO, XSK) and octupoles (ONO) are ramped up and down based on the resonance crossing

- Brightness curve (measurements performed by Hannes and Foteini)

- **MD user (LHC2A) 1.5 eVs instead of 2 eVs (operational user)**
Overview

• LHC25: current status
• Improving the machine performance
• Measurement and correction of the beta-beating with k-modulation

• Impact on intensity
• Impact on emittance
• Summary and Next Steps
Brightness limit from space charge

- Space charge tune spread increases with intensity
Brightness limit from space charge

- Space charge tune spread increases with intensity
• Space charge tune spread increases with intensity
Brightness limit from space charge

- Space charge tune spread increases with intensity
• Space charge tune spread increases with intensity
• Beam core interacts with the integer resonance causing emittance blow-up. The space charge tune spread decreases until equilibrium.
• Space charge tune spread increases with intensity
• Beam core interacts with the integer resonance causing emittance blow-up. The space charge tune spread decreases until equilibrium.
• Space charge tune spread increases with intensity
• Beam core interacts with the integer resonance causing emittance blow-up. The space charge tune spread decreases until equilibrium.
Brightness limit from space charge

• Space charge tune spread increases with intensity
• Beam core interacts with the integer resonance causing emittance blow-up. The space charge tune spread decreases until equilibrium.
• Space charge tune spread increases with intensity
• Beam core interacts with the integer resonance causing emittance blow-up. The space charge tune spread decreases until equilibrium.
• Increasing the vertical tune would in principle allow a smaller emittance blow-up with the same intensity.
Operation close to the half-integer

- Space charge tune spread increases with intensity
- Beam core interacts with the integer resonance causing emittance blow-up. The space charge tune spread decreases until equilibrium.
- Increasing the vertical tune would in principle allow a smaller emittance blow-up with the same intensity.

- Operation close to the half-integer induces losses because:
 - beta-beating is enhanced
 - chromaticity drives the particles to the resonance
Overview

• LHC25: current status

• Improving the machine performance

• Measurement and correction of the beta-beating with k-modulation

• Impact on intensity

• Impact on emittance

• Summary and Next Steps
The improvement of POPS-B and the tune control allowed the measurement and correction of the optics perturbations.

A dynamically changing beta-beating is expected in the first ms after injection.

These optics perturbations are measured at the positions of the individually powered quadrupoles BR.QDE3/14 using k-modulation.
Very good **agreement** between the expected and the measured perturbation: good modelling of the error sources and the machine lattice.

Tune is evaluated over 1000 turns (~1 ms): optics perturbations are changing over this interval.
K-modulation measurement and correction (logbook)

Dynamic beta-beating correction (q-strips of QDE 3/14)
Dynamic beta-beating correction (q-strips of QDE 3/14)

The correction will induce perturbations on the tune: needs to be corrected back (q-strips of all QDEs and QFOs)
K-modulation measurement and correction (logbook)

Before correction

After correction
Additional correction on the tune

Additional correction functions to the q-strips to flatten the tune:
Overview

• LHC25: current status

• Improving the machine performance

• Measurement and correction of the beta-beating with k-modulation

• Impact on intensity

• Impact on emittance

• Summary and Next Steps
Impact on intensity

\[Q_v = 4.43 \]
Impact on intensity

\[Q_v = 4.45 \]
Impact on intensity

\[Q_v = 4.46 \]
Impact on intensity

$Q_v = 4.47$
Impact on intensity

Set tune is 4.47; **actual tune** is even larger (4.48-4.49)!

- Clear improvement on the beta-beating: beam intensity is stable much closer to the half-integer resonance
- Similar situation for larger intensities

Investigations ongoing to check if the vertical chromaticity correction is overall beneficial
Overview

• LHC25: current status

• Improving the machine performance

• Measurement and correction of the beta-beating with k-modulation

• Impact on intensity

• Impact on emittance

• Summary and Next Steps
Impact on emittance (Run 2 intensities)

Only vertical emittance measured
Impact on emittance (Run 2 intensities)

Only vertical emittance measured

Run 2 intensities (~150E10)

Emittance at C770 (μm)

without beta-beat correction
with beta-beat correction

Qν (set)

amplitude (a.u.)

Qν = 4.44

position (mm)
Impact on emittance (Run 2 intensities)

Only vertical emittance measured
Impact on emittance (Run 2 intensities)

Only vertical emittance measured
Impact on emittance (Run 2 intensities)

Only vertical emittance measured

- Not clear improvement on the emittance for the Run 2 emittances

![Emittance Comparison](image-url)
Impact on emittance (LIU intensities)

- Not clear improvement on the emittance for the Run 2 emittances
- For the LIU intensities there seems to be a clear emittance decrease with the increase of the vertical tune
- Emittance blow-up at 4.47 could come from the interaction with the half-integer (remember: QNOs are OFF)

Only vertical emittance measured
• Not clear improvement on the emittance for the Run 2 emittances
• For the LIU intensities there seems to be a clear emittance decrease with the increase of the vertical tune
• Emittance blow-up at 4.47 could come from the interaction with the half-integer (remember QNOs are OFF)
Overview

• LHC25: current status

• Improving the machine performance

• Measurement and correction of the beta-beating with k-modulation

• Impact on intensity

• Impact on emittance

• Summary and Next Steps
Summary and Next Steps

• Injection chicane induced beta-beating measured with k-modulation at expected levels.
• Correction calculated and applied on R3.
• Intensity restored when correction applied for vertical tunes close to the half-integer (reduced beta-beating).
• Brightness gain when increasing the vertical tune only visible for the LIU intensities.
Summary and Next Steps

• Injection chicane induced beta-beating measured with k-modulation at expected levels.
• Correction calculated and applied on R3.
• Intensity restored when correction applied for vertical tunes close to the half-integer (reduced beta-beating).
• Brightness gain when increasing the vertical tune only visible for the LIU intensities.

Next:
• Evaluate impact of chromaticity correction and half-integer correction (QNOs)
• Repeat measurements on clone of operational LHC25 user for different tune evolutions (larger tune plateau at injection); optimize horizontal emittance.
Summary and Next Steps

• Injection chicane induced beta-beating measured with k-modulation at expected levels.
• Correction calculated and applied on R3.
• Intensity restored when correction applied for vertical tunes close to the half-integer (reduced beta-beating).
• Brightness gain when increasing the vertical tune only visible for the LIU intensities.

Next:
• Evaluate impact of chromaticity correction and half-integer correction (QNOs)
• Repeat measurements on clone of operational LHC25 user for different tune evolutions (larger tune plateau at injection); optimize horizontal emittance.

Ultimately:
• Define correction functions for QDE3/14 for all rings and apply them to all operational beams depending on the working point.
• Study the half-integer resonance and investigate if injection above it would be feasible

Thank you for your attention!
Backup
K-modulation after the fall of the chicane

Half-integer correction is ON

Half-integer correction is OFF
Impact on the tails

At 4.40/4.45 where beta-beating non-negligible but not so strong to cause losses; very low intensity beam (~30E10) and profile measured at C290

Slight improvement?
Impact on emittance (Run 2 intensities)

Same measurements as before but with QNOs ON