KNOW THYSELF

THE SCIENCE OF SELF-AWARENESS

STEPHEN M. FLEMING

metacoglab.org/book

@smfleming

Being self-aware

"Being aware of being aware of being... In other words, if I not only know that I am, but also know that I know it, then I belong to the human species. All the rest follows - the glory of thought, poetry, a vision of the universe. In that respect the gap between ape and man is immeasurably greater than one between amoeba and ape."

Vladimir Nabokov, Strong Opinions

UCL

Metacognition - "thinking about thinking"

The raw materials

Santiago Ramon y Cajal, 1852 - 1934

The biological basis of thought

M/EEG – millisecond temporal resolution, poorer spatial resolution

The biological basis of thought

fMRI – slow, high spatial resolution

How to measure metacognition

A primer on measuring metacognition

FOUNDATIONS OF METACOGNITION

MICHAEL J. BERAN, JOHANNES L. BRANDL, JOSEF PERNER, JOËLLE PROUST

BEHAVIOUR

METACOGNITIVE JUDGMENT

E.g. answer to exam question; response in an experiment E.g. **confidence** in getting the answer right

Studying metacognition: Type 1 and Type 2 decisions

Type 1 decision:

Not possible to quantify metacognition from a single judgment

Need multiple judgments over time, examine **statistical association** between behaviour and metacognitive judgments

Quantifying metacognition - type 2 ROC analysis

Two Types of ROC Curves and Definitions of Parameters*

F. R. CLARKE, T. G. BIRDSALL, AND W. P. TANNER, JR. Electronic Defense Group, University of Michigan, Ann Arbor, Michigan (Received February 26, 1959)

Clarke et al. (1959) J Acoust Soc Am; Galvin et al. (2003) Psych Bull Rev

Generative model for metacognition - meta-d'

Maniscalco & Lau (2012) Consciousness & Cognition; Fleming (2017) Neuroscience of Consciousness

cience of

sciousness

Type 1 and Type 2 sensitivity

meta-d'/d' = metacognitive efficiency

niscalco & Lau (2012) Consciousness & Cognition; Flemin

Individual differences in metacognition

Key focus on frontal lobe; damage often affects self-awareness / insight

Ch b li ih blh ih ii fh b i c

Isolating metacognition from performance hi h r t t b t 2)

Performance titrated using a 2-down 1-up staircase 32 participants 600 trials per participant

Fleming et al. (2010) Science

Isolating metacognition from performance

hihr t tbt 2

Isolating metacognition from performance •

Fleming et al. (2010) Science

5,000

3,000

-3,000

-5,000

Metacognitive sensitivity and aPFC

Relating Introspective Accuracy to Individual Differences in Brain Structure

Stephen M. Fleming,¹*† Rimona S. Weil,^{1,2}* Zoltan Nagy,¹ Raymond J. Dolan,¹ Geraint Rees^{1,2}

Right frontopolar cortex activity correlates with reliability of retrospective rating of confidence in short-term recognition memory performance

Osamu Yokoyama^{a,b,c}, Naoki Miura^{c,d}, Jobu Watanabe^{c,d,e}, Atsushi Takemoto^{b,c}, Shinya Uchida^{d,f}, Motoaki Sugiura^g, Kaoru Horie^{e,h}, Shigeru Sato^{e,h}, Ryuta Kawashima^{c,d,e,f}, Katsuki Nakamura^{b,c,*}

Anatomical Coupling between Distinct Metacognitive Systems for Memory and Visual Perception

Li Yan McCurdy,¹ **Brian Maniscalco**,¹ **Janet Metcalfe**,¹ **Ka Yuet Liu**,² **Floris P. de Lange**,³ **and Hakwan Lau**^{1,3} ¹Department of Psychology, Columbia University, New York, New York 10027, ²Department of Sociology, University of California, Los Angeles, Los Angeles, California 90095, and ³Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour, 6500 HE Nijmegen, The Netherlands

Metacognitive ability correlates with hippocampal and prefrontal microstructure

Micah Allen^{a,b,*}, James C. Glen^a, Daniel Müllensiefen^c, Dietrich Samuel Schwarzkopf^{a,d}, Francesca Fardo^{a,e,f}, Darya Frank^g, Martina F. Callaghan^b, Geraint Rees^{a,b}

Medial and Lateral Networks in Anterior Prefrontal Cortex Support Metacognitive Ability for Memory and Perception

Benjamin Baird,¹ Jonathan Smallwood,² Krzysztof J. Gorgolewski,³ and Daniel S. Margulies³

¹Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, ²Department of Psychology, University of York, North Yorkshire Y010 5DD, United Kingdom, and ³Max Planck Research Group: Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany

Individual differences in metacognition

Within-subject construction of confidence

Neural encoding of confidence

Controlling influences on confidence

Bang & Fleming (2018) PNAS

Distilling confidence from sensory reliability

Factorial design decouples sensory reliability and confidence

Bang & Fleming (2018) PNAS

Distilling confidence from sensory reliability

Behavioural results

Bang & Fleming (2018) PNAS

Components of confidence - sensory reliability

Shared signals for confidence across tasks

Confidence-related activity patterns

Morales, Lau & Fleming (2018) J Neuro

Recruitment of prefrontal cortex in service of metarepresentations can explain loss of selfawareness in brain damage/disease

Computing confidence: basic ingredients

Computational building blocks of metacognition

Second-order models a) permit dissociation between performance and metacognition and b) predict confidence is a late-stage construction from state/action variables

Fleming & Daw (2017) Psych Rev

Second-order computation

Estimating one's

own confidence is

computationally

equivalent to

estimating the

performance of

another individual

1) Between-subject case

2) Within-subject case

Second-order computation - between-subject case

Second-order computation - within-subject case

Influence of motor system on confidence reports

Paradoxical effects of self-action on metacognition

Paradoxical effects of self-action on metacognition

2.50

2.00

1.50

1.00

0.50

Wokke et al. 2020 Sci Reports

Fleming, Maniscalco, Ko, Amendi, Ro & Lau (2015) Psych Science

Influence of motor system on confidence reports

Fleming, Maniscalco, Ko, Amendi, Ro & Lau (2015) Psych Science

Influence of motor system on confidence reports

Fleming, Maniscalco, Ko, Amendi, Ro & Lau (2015) Psych Science

Brain networks for thinking about thinking

Linking Metacognition and Mindreading: Evidence From Autism and Dual-Task Investigations

Toby Nicholson and David M. Williams University of Kent Sophie E. Lind City, University of London

Catherine Grainger University of Stirling Peter Carruthers University of Maryland

- Autistic participants were impaired in explicit confidence ratings (but not implicit gambles) compared to neurotypical participants
- No differences in first-order task performance between ASD and NTs
- A secondary task that involves thinking about others ("theory of mind" task) interferes with explicit (but not implicit) metacognition about self
- A similarly demanding secondary task that does *not* involve thinking about others does not interfere with metacognition

"How should I know what I'm thinking? I'm not a mind reader."

Summary

- We can measure metacognition across different tasks as the statistical association between behaviour and self-evaluation (confidence)
- Adopting a signal detection theory framework allows simultaneous estimation of both first-order (d') and metacognitive (meta-d') sensitivity
- Metacognitive confidence is encoded in activation patterns in PFC independently of behavioural performance
- Human-level self-awareness may be supported by second-order computations that share resources with the capacity to think about others (theory of mind)

KNOW THYSELF

THE SCIENCE OF SELF-AWARENESS

STEPHEN M. FLEMING

metacoglab.org/book

@smfleming