Parallelisation of (Track) Fits

HighRR Lecture Week

27. Sep. - 1. Oct .2022

DFG Peutsche
Forschungsgemeinschaft

Andre Schöning (Heidelberg PI)

→ with a clear focus on algorithms

YOU

Parallelisability

Overview

- Motivation
- Intro to Track Fits (Overview)
- Fitting Tracks with Hit Uncertainties
- Linearisation
- **A New Hit Uncertainty Track Fit**
	- ➢ Triplet Representation (parallelisable)
	- ➢ Cholesky Decomposition (non-parallelisable)
- Summary

I will try to avoid formulas whenever possible

D I D A C T I C A L

A. Schöning (Heidelberg PI) 4 Parallelisation of Fits

- low track multiplicity
- many measurement points per track
- despite some ambiguities track finding is very easy

- low track multiplicity
- many measurement points per track
- despite some ambiguities track finding is very easy

- ➢ no physics model is needed
- ➢ any amateur can find tracks!

- low track multiplicity
- many measurement points per track
- despite some ambiguities track finding is very easy

- low track multiplicity
- many measurement points per track
- despite some ambiguities track finding is very easy

- ➢ but in the situation of sparse information the task becomes much more difficult!
- ➢ physics model (B-field, lorentz force, momentum conservation) is required to reconstruct the tracks

Sparse Detector (Hit) Information

Knowledge helps to find (identify) tracks \rightarrow should make use of it!

Examples for Sparse Hit Information

Trigger:

 \rightarrow limitations from bandwidth & processing power

Semiconductor Trackers:

 \rightarrow limitations from multiple scattering (resolution) & powering & costs

Mu3e: only four (pixel) tracking layers

A. Schöning (Heidelberg PI) 10 Parallelisation of Fits

Track Reconstruction Example I

Cellular Automaton (e.g. CBM experiment, ALICE):

- **local** method based on segments
- uses mostly **topological** information
- parallelisable
- implemented e.g. on GPUs

works only if hit density is dense enough

sketch from I.Kisel

A. Schöning (Heidelberg PI) 11 Parallelisation of Fits

Track Reconstruction Example II

ATLAS Fast TracKer Project (2019†) ATLAS SCT

Track Reconstruction Example III

Track Reconstruction Example III

Full track fit:

Full glory fit (magnetic field) is computationally intensive!

A. Schöning (Heidelberg PI) 14 Parallelisation of Fits

High Track Multiplicities (ATLAS)

Motivation for fast (& full) tracking:

- Identify special or rate track based signatures (e.g. long lived particles)
- track-assisted object reconstruction for tracker (e.g. high energy particles)

ATLAS Approaches

- **FTK** Project (2019†)
- **Phase II** (High Lumi-LHC) Hardware Track Trigger Project (**HTT**, 2021†)
- **New**: fast tracking on **Event Filter** (EF)
	- ➢ option A: **CPU** only?
	- ➢ option B: **GPU-** or **FPGA-** accelerated?
		- \rightarrow provide highly parallel computing architectures!

A. Schöning (Heidelberg PI) 15 Parallelisation of Fits

Possible to reconstruct all tracks?

ATLAS High Luminosity Inner TracKer (ITK) with **200 pileup** events at **40 MHz** collisions

Question to students:

What is your favorite tracking concept or algorithm? And why?

Chapter 2 Introduction to Track Fits

The Master Equation

The Master Equation

$$
\chi^2 = \left[\sum_{\text{layer } i} \frac{\Theta_{\text{MS},i}^2}{\sigma_{\theta,i}^2} + \frac{\Phi_{\text{MS},i}^2}{\sigma_{\phi,i}^2} \right] + \left[\sum_{\text{hits } jk} (x_j - \xi_j) V_{jk}^{-1} (x_k - \xi_k) \right]
$$

Problems and difficulties:

- hit error matrix V^{-1} depends on the trajectory (result)
- scattering uncertainties and scattering angles depend on trajectory (result)
- fitted hit positions are all correlated → **no local** processing possible
- single outliers can spoil the fit → **iterative** outlier rejection

non-locality and iterations are the enemy of parallelisation

A. Schöning (Heidelberg PI) 19 Parallelisation of Fits

Kálmán Filter (KF)

The Kálmán Filter is an algorithm method which combines

- **track finding** (aka hit linking) and
- trajectory determination (**track parameter fitting**)

Simple example:

Calculation of an average

Note, the KF as such does not implement any physics!

A. Schöning (Heidelberg PI) 20 Parallelisation of Fits

Example: Asteroids

Asteroid Pallas (first found be German astronomer Heinrich Olbers in 1807)

Tracking of Asteroids

Suppose we discover an asteroid!

State vector described by

$$
\vec{r} = (x, y, z, v_x, v_y, v_z)
$$

 $1st$ measurement (11.9): \rightarrow **2d** information 2 nd measurement (21.9): → 2d+2d=**4d** information 3 rd measurement (1.10): → 4d+2d=**6d** information

→ able to reconstruct state vector *r* and first guess of error matrix

4 th measurement (11.10): → **update** state and error matrix 5th measurement (21.10): → **update** state and error matrix ...

→ the more measurements, the more precise!

Rudolf Kálmán (1930-2016)

Kálmán (emeritus ETH professor) receiving the National Medal of Science from US president Obama in Oktober 2009.

Tracking of air-planes

Tracking of space crafts (NASA Apollo mission)

A. Schöning (Heidelberg PI) 23 Parallelisation of Fits

Kálmán Filter Applied to Tracking

Hit linking example:

n n+1

n-1

Properties:

- **flexible**
- relies on track **extrapolation** (works also in inhomogeneous magnetic fields)
- **iterative** algorithm (**not parallelisable**)
- results depend on the **order** and **direction** (e.g. **inside-out** versus **outside-in** tracking)

The Kálmán fitter is the **gold standard** in particle physics, nowadays

A. Schöning (Heidelberg PI) 24 Parallelisation of Fits

Is there any parallelisable track fit?

The Master Equation

$$
\chi^2 = \left[\sum_{\text{layer } i} \frac{\Theta_{\text{MS},i}^2}{\sigma_{\theta,i}^2} + \frac{\Phi_{\text{MS},i}^2}{\sigma_{\phi,i}^2} \right] + \left[\sum_{\text{hits } jk} (x_j - \xi_j) V_{jk}^{-1} (x_k - \xi_k) \right]
$$

Multiple scattering uncertainties dominate for:

- **low momentum** tracks (→ low energy physics)
- **high precision** trackers (→instrumentation technology)

$$
\text{Highland formula (PDG):} \quad \theta_0 = \theta \text{ rms} = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x \ z^2}{X_0 \beta^2}) \right]
$$
\n(RMS of scattering angle)

→ A multiple scattering fit can be **parallelised**!

A. Schöning (Heidelberg PI) 26 Parallelisation of Fits

The Multiple Scattering Fit

Literature:

● **A New Track Reconstruction Algorithm suitable for Parallel Processing based on Hit Triplets and Broken Lines** [AS], EPJ Web Conf. 127 (2016) 00015

 R_{2}

● **A New Three-Dimensional Track Fit with Multiple Scattering,** N.Berger, M.Kiehn, A.Kozlinskyi, [AS], \bf{B} NIMA 844C, 135 (2017) \otimes \overline{R} \mathbf{d}_{01} $\Phi_{\rm MS}$ $\Phi_{\rm MS}$ **fit of hit triplet:** Φ \mathbf{x}_2

→ used by **Mu3e** and **Belle2** experiments

 z_{12} .

 θ_{1}

 Z_{01}

Z

 \mathbf{x}_0

A. Schöning (Heidelberg PI) 27 Parallelisation of Fits

 R_{1}

 \mathbf{x}

The Multiple Scattering Triplet Fit

Assumptions:

- All points **xi-1, xⁱ , xi+1** (instrumentation layers) are given
- the modulus of the **momentum p** of the particle is **conserved**
- the magnetic **field B** is constant
-

(convenient to use cylinder coordinates)

• the **material** in **layer i** is known \rightarrow The **momentum |p|** is the only free (unknown) parameter of the particle

> ➢ The MS angles (*θMS ,ФMS*)→minimised depend on **|p|**

$$
\chi^2 = \frac{\Theta_{MS}^2}{\sigma_{\theta}^2} + \frac{\Phi_{MS}^2}{\sigma_{\phi}^2}
$$

➢ All other parameters (e.g. direction) can be i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1 derived from triplet geometry if **|p|** is known!

A. Schöning (Heidelberg PI) 28 Parallelisation of Fits

B-Field: The Helix

Parameterisation (Cartesian coordinates):

$$
\mathbf{r}(t) = R \left[\cos(2\pi t) \mathbf{e}_x + \sin(2\pi t) \mathbf{e}_y \right] + h t \mathbf{e}_z
$$

In transverse plane (2D) of a magnetic field

$$
R=\frac{p_{\perp}}{qB}
$$

Define:

$$
R_{3D} = \frac{R}{\sin(\theta)} = \frac{p}{qB}
$$

invariant for MS!

Relation:

 $R_{3\,D}^2=R_{2\,D}^{}\,R_{\rm helix}^{}\,$ (geometric average)

ez

B

A. Schöning (Heidelberg PI) 29 Parallelisation of Fits

Solution of MS Triplet Fit

Calculate:

 $\Phi_{\rm MS} = \Phi_{\rm MS}(R_{\rm 3D})$ $\Theta_{\rm MS} = \Theta_{\rm MS}(R_{\rm 3D})$

Solution given by

$$
\sin^2 \frac{\Phi_1}{2} = \frac{d_{01}^2}{4R_{3D}^2} + \frac{z_{01}^2}{R_{3D}^2} \frac{\sin^2 \Phi_1/2}{\Phi_1^2}
$$

$$
\sin^2 \frac{\Phi_2}{2} = \frac{d_{12}^2}{4R_{3D}^2} + \frac{z_{12}^2}{R_{3D}^2} \frac{\sin^2 \Phi_2/2}{\Phi_2^2}
$$

and

$$
\sin\theta_1 = \frac{d_{01}}{2R_{3D}} \csc\left(\frac{z_{01}}{2R_{3D}\cos\theta_1}\right)
$$

$$
\sin\theta_2 = \frac{d_{12}}{2R_{3D}} \csc\left(\frac{z_{12}}{2R_{3D}\cos\theta_2}\right)
$$

 \rightarrow transcendent equations

A. Schöning (Heidelberg PI) 30 Parallelisation of Fits

Important geometric relations for solution:

$$
R_{3D}^2 = R_1^2 + \frac{z_{01}^2}{\Phi_1^2} = R_2^2 + \frac{z_{12}^2}{\Phi_2^2}
$$

$$
\Phi_{MS}(R_{3D}) = (\phi_{12} - \phi_{01}) - \frac{\Phi_1(R_{3D}) + \Phi_2(R_{3D})}{2}
$$

Linearisation of MS Triplet Fit

- Minimisation of the χ²-function requires the **derivative** of **transcendent** equations (→ **OK**)
- But the derivatives are again transcendent equations; **no algebraic solution** (→ **NOK**)
- However, the functions are **analytical** → **linearisation ansatz**

x₁ \odot B **x0 Radius of approximated circle :** $R_C = \frac{d_{01} d_{12} d_{02}}{2 \left[(\mathbf{x_1} - \mathbf{x_0}) \times (\mathbf{x_2} - \mathbf{x_1}) \right]_7}$ **x2** \mathcal{X}

Trick: assume that the scattering **angles are small!** $(\rightarrow$ good assumption)

transverse plane

→ treat multiple scattering as small perturbation!

A. Schöning (Heidelberg PI) 31 Parallelisation of Fits

Single MS Triplet Fit

3D Radius (momentum):

$$
R_{3D}^{min} = -\frac{\eta \tilde{\Phi} \sin^2 \theta + \beta \tilde{\Theta}}{\eta^2 \sin^2 \theta + \beta^2}
$$

independent of MS uncertainty!

Fit quality:

$$
\chi_{min}^2 = \frac{1}{\left(\sigma_{MS}^2\right)\eta^2 + \beta^2/\sin^2\theta}
$$

3D Radius **uncertainty**:

$$
\sigma(R_{3D}) = \sigma_{MS} \sqrt{\frac{1}{\eta^2 \sin^2 \theta + \beta^2}}
$$

Note that σ_{MS} is calculated from MS-formula using above momentum result

A. Schöning (Heidelberg PI) 32 Parallelisation of Fits

Geometry parameters are based on circle solution:
\n
$$
\tilde{\Phi} = -\frac{1}{2}(\Phi_{1C}\alpha_1 + \Phi_{2C}\alpha_2),
$$
\n
$$
\eta = \frac{d\Phi_{MS}}{dR_{3D}} = \frac{\Phi_{1C}\alpha_1}{2R_{3D,1C}} + \frac{\Phi_{2C}\alpha_2}{2R_{3D,2C}}
$$
\n
$$
\tilde{\Theta} = \vartheta_{2C} - \vartheta_{1C} - \left((1 - \alpha_2) \cot \vartheta_{2C} - (1 - \alpha_1) \cot \vartheta_{1C} \right)
$$
\n
$$
\beta = \frac{d\Theta_{MS}}{dR_{3D}} = \frac{(1 - \alpha_2) \cot \vartheta_{2C}}{R_{3D,2C}} - \frac{(1 - \alpha_1) \cot \vartheta_{1C}}{R_{3D,1C}}.
$$
\nwith index
\nparteters:
\n
$$
\alpha_1 = \frac{R_C^2 \Phi_{1C}^2 + z_{01}^2}{\frac{1}{2}R_C^2 \Phi_{1C}^3 \cot \frac{\Phi_{1C}}{2} + z_{01}^2}
$$
\n
$$
\alpha_2 = \frac{R_C^2 \Phi_{2C}^2 + z_{12}^2}{\frac{1}{2}R_C^2 \Phi_{2C}^3 \cot \frac{\Phi_{2C}}{2} + z_{12}^2}
$$

Example Spectrometer

A. Schöning (Heidelberg PI) 33 Parallelisation of Fits

Combination of Triplets

Each triplet fit provides:

$$
R_{3\text{D}i} \; , \; \sigma(R_{3\text{D}})_i \; , \; \chi_i^2
$$

averaging:

$$
\overline{R_{3D}} = \sum_{i}^{n_{hit}-2} \frac{R_{3D,i}}{\sigma_i (R_{3D})^2} / \sum_{i}^{n_{hit}-2} \frac{1}{\sigma_i (R_{3D})^2}
$$

combination:

$$
\chi^2_{comb} = \sum_{i = \text{triple}}
$$

$$
\chi^{2}_{i} \ + \ \frac{(R_{\rm 3D,i}-\overline{R_{\rm 3D}})^{2}}{\sigma_{i}(R_{\rm 3D})^{2}}
$$

Comments:

- every triplet is independent (hit positions are given)
- thus, all momentum measurements are independent!
- errors are uncorrelated

number of hits: **N**_{hit} number of triplets: $N_{\text{triplet}} = N_{\text{hit}}$ -2

Remark: track building is simple:

- ➢ connecting triplets share two hits
- ➢ connecting triplets should have compatible momenta **→ graph theory**

A. Schöning (Heidelberg PI) 34 Parallelisation of Fits

Question to students:

What are the advantages and achievements of the MS Triplet fit?

Chapter 3 Fitting Tracks with Hit Uncertainties
The Master Equation

$$
\chi^2 = \left[\sum_{\text{layer }i} \frac{\Theta_{\text{MS},i}^2}{\sigma_{\theta,i}^2} + \frac{\Phi_{\text{MS},i}^2}{\sigma_{\phi,i}^2} \right] + \left[\sum_{\text{hits }jk} (x_j - \xi_j) V_{jk}^{-1} (x_k - \xi_k) \right]
$$

A. Schöning (Heidelberg PI) 37 Parallelisation of Fits

Fitting Tracks with Hit Uncertainties

Fitting Tracks with Hit Uncertainties (no multiple scattering)

Case B

- no B-field
- slope unknown
	- ➔ **straight line fit**

Fitting Tracks with Hit Uncertainties (no multiple scattering)

Case C

- B-field > 0
- slope unknown
- momentum unknown
	- ➔ **helix fit**

A. Schöning (Heidelberg PI) 40 Parallelisation of Fits

Question to students:

Which of the three cases are parallelisable?

And if yes, how?

Fitting a Helix to Hits with Errors

Described by a non-linear equation:

 $\boldsymbol{r}(t) = R \left[\cos(2\pi t) \boldsymbol{e}_x + \sin(2\pi t) \boldsymbol{e}_y \right] + h t \boldsymbol{e}_z$

In general, difficult to solve:

- hit errors need to be **projected** on trajectory
- minimisation problem is **non-linear**

However, for the case of simple hit weights an **algebraic solution** exists for **circle** fit:

➢ **circle fit from Karimaki** (1991)

Karimaki Circle Fit

New parameters defined:

dca = distance of closest approach to origin (aka d $_{\rm o})$

- Φ = initial angle at dca
- $\kappa = 1/R =$ curvature of radius

Closest distance between hit and circle:

$$
\varepsilon_i = \pm \left[\sqrt{\left(x_i - a\right)^2 + \left(y_i - b\right)^2} - R \right]
$$

Task: minimise χ^2 with respect to \rightarrow K, dca, Φ:

$$
\chi^2 = \sum_i w_i \epsilon_i^2 \qquad \text{(w}_i \text{ are weights)}
$$

Parameter Transformations

If hits are positioned close to circle:

$$
\varepsilon_i \stackrel{|\varepsilon_i| \ll R}{\approx} \pm R^{-1} \left[\left(x_i - a \right)^2 + \left(y_i - b \right)^2 - R^2 \right]
$$

$$
\chi^2 = \sum_i w_i \epsilon_i^2
$$

Problems:

- parameters *a, b, R* can become very large (high momentum tracks) \rightarrow numerical unstable
- uncertainties (for example on R) are not Gaussian distributed!
- 1. Switch to polar coordinates and use new parameters:

$$
\varepsilon_i = \frac{1}{2}\kappa r_i^2 - (1 + \kappa d_{ca}) r_i \sin(\phi - \varphi_i) + \frac{1}{2}\kappa d_{ca}^2 + d_{ca}
$$

2. simplify expression further by transforming χ^2 function:

 $\chi^2 = (1 + \kappa d_{ca}) \hat{\chi}^2$ $\varepsilon_i = (1 + \kappa d_{ca}) \eta_i$

and minimisation of

result depends now weakly on position of origin!

A. Schöning (Heidelberg PI) 44 Parallelisation of Fits

Results

$$
q_1 = C_{r^2r^2}C_{xy} - C_{xr^2}C_{yr^2}
$$

\n
$$
q_2 = C_{r^2r^2}(C_{xx} - C_{yy}) - C_{xr^2}^2 + C_{yr^2}^2
$$

\n
$$
\phi = 1/2 \arctan(2q_1/q_2)
$$

\n
$$
\beta = (\sin \phi C_{xr^2} - \cos \phi C_{yr^2})/C_{r^2r^2}
$$

\n
$$
\delta = -\beta \langle r^2 \rangle + \sin \phi \langle x \rangle - \cos \phi \langle y \rangle
$$

\n
$$
C_{pq}
$$
 are the covariance of samples *p* and *q*

Fit quality (only approximate):

 $\chi^2 = S_w (1 + \kappa d_{ca})^2 (\sin^2 \phi C_{xx} - 2 \sin \phi \cos \phi C_{xy} + \cos^2 \phi C_{yy} - \kappa^2 C_{r^2 r^2})$

- non-iterative track fit
- provides error matrix (not shown)
- complexity of calculation a bit higher than for MS fit (but different regime)

A. Schöning (Heidelberg PI) 45 Parallelisation of Fits

Question for students:

What are the advantages of the circle fit? What are the difficulties for parallelisation?

Helix Fit with Karimaki

"**2.5D tracking**": fit transverse and longitudinal plane separately: transverse plane longitudinal plane -10 $s = 2 \pi R t$ s y 8 χ^2 $\begin{array}{ccc} \text{circle} & & \end{array}$ $\begin{array}{ccc} & & \end{array}$ $\begin{array}{ccc} & & \end{array}$ $\begin{array}{ccc} & & \end{array}$ $\begin{array}{ccc} & & \end{array}$ 2 s-z line -0.5 z x 0. x-y fit provides: s-z fit provides: \bullet abscissa z_0 • $R =$ radius *r*(*t*) = *R* [cos(2π*t*) e_x + sin(2π*t*) e_y] \bullet Φ = azimuth at dca • tan $\Theta = \Delta s / \Delta z$ $+$ *h* te_z \bullet dca = distance of closest approch

 \rightarrow hit correlations between transverse and longitudinal plane are not considered!

A. Schöning (Heidelberg PI) 47 Parallelisation of Fits

Comparing Results

plot from NIMA 844C, 135 (2017) (aka MS-fit)

(Karimaki)

(MS-fit)

3000

Momentum / MeV/c

GBL=General Broken Line V. Blobel, NIMA, 566 (2006) 14.

• MS-fit is 2-5 times faster than Karimäki

2000

MS dominates

1000

 $\theta = 70^{\circ}$

Triplets

Single Helix

GBL (Helix)

GBL (Triplets)

• GBL is about $O(100)$ slower than the others

A. Schöning (Heidelberg PI) 48 Parallelisation of Fits

2.6

2.4

 2.2

 Ω

hit uncertainties

4000

5000

dominate

Chapter 4 Linearisation

Linearisation & Linear Fit

If a reference trajectory close to the final resolution is given, the problem can be **linearised** by treating the hit displacements as **small corrections**

- 1.calculate hit positions and pulls with respect to reference trajectory
- 2.update **position x** , **slope β** , **curvature radius R** (momentum)
- 3.can be **repeated** (iterated) for high **precision**

A. Schöning (Heidelberg PI) 50 Parallelisation of Fits

Applications

Linearised track fit is a good approach if

- the **track parameters** are **roughly known** by a previous reconstruction step (e.g. pattern match, other track finding techniques)
- Tracks are known to be roughly **straight lines** (no B-field, high momentum tracks)

Example: **ATLAS FTK & HTT** track trigger projects (similar project in CMS)

- ➢ The different **roads** describe/contain bundles of **similar trajectories**
- ➢ The roads provide an **initial guess** of the **track parameters**

Linearisation of a Circle/Helix Fit

Given a list of *p* track parameters (e.g. *R, Φ, dca, θ, z⁰*):

 $p_i^{\text{true}}, i = 1, ..., p$

and *N* hit displacements with respect to reference orbit:

 $\delta x_i = x_i - \overline{x}_i$

Then the track is linearised using:

 $p_i = \sum_{j=1}^{N} A_{ij} \delta x_j + \overline{p}_i$

with coefficients A_{ii} (matrix of N x p coefficients)

Example for coefficients (weights): slope beta radius/curvature hit positions: value value

position

A. Schöning (Heidelberg PI) 52 Parallelisation of Fits

Linearisation of Fit Quality

For track finding (good/bad) or a track trigger the fit quality is crucial!

The calculation of the chi2 function can also be linearised using a principal component analysis:

$$
\chi_i = \sum_{j=1}^{N} B_{ij} \delta x_j
$$

$$
\chi^2 = \sum_{i=1}^{N-p} \chi_i^2
$$

The coefficients B_{ii} can be represented by a **N x (N-p)** matrix.

- Example: $p=5$ parameters, N=12 hits \rightarrow 84 parameters
- not all coefficients are significant
- clever choice of parameters can reduce the complexity (\rightarrow extra slide)

Example: ATLAS HTT

Pattern Recognition Mezzanine

A. Schöning (Heidelberg PI) 54 Parallelisation of Fits

Example: ATLAS HTT

A. Schöning (Heidelberg PI) 65 **Parallelisation of Fits** 55 **Parallelisation of Fits**

Question to students:

What do you consider is most challenging and technologically ambitious in this design?

Best Fitting Parameters?

 r'

r

- The fitted value and its uncertainty and also the correlations depend on the choice of the **coordinate system**!
- a wrong coordinate system choice can lead to large **non-linearities**
- it is also possible to **redefine parameters** which behave better in the fit

e.g.
$$
z' = z - \cot(\theta)(R - R') - \frac{\cot(\theta)R^3}{6(2\rho)^2}
$$

from [arXiv:1809.01467]

z'0

z0

z

z'

1σ envelop

best fit

Chapter 5 A New Hit Uncertainty Track Fit

Recap

Full track fit:

$$
\chi^2 = \left[\sum_{\text{layer } i} \frac{\Theta_{\text{MS},i}^2}{\sigma_{\theta,i}^2} + \frac{\Phi_{\text{MS},i}^2}{\sigma_{\phi,i}^2} \right] + \left[\sum_{\text{hits } jk} (x_j - \xi_j) V_{jk}^{-1} (x_k - \xi_k) \right]
$$

includes **multiple scattering** and **hit uncertainties**

- **MS fit** alone can be **parallelised**
- This parallelisation is based in **hit triplets**
- Hit uncertainty fit can be **linearised**
	- \rightarrow good for parallisation
- But linearisation needs a **reference** trajectory

(*θ,Ф)*

Question to students:

What is the next logical step?

A. Schöning (Heidelberg PI) 60 **Parallelisation of Fits**

Hit Triplets

- A hit **triplet** is the smallest tracking **element** which contains all track parameter information
- The **precision** of the triplet track parameters depend on the **lever arm** (size)
- For track finding, triplets are often used as **seeds** (combinatorics is small):

seed finding = triplet finding!

Easy reconstruction in homogeneous magnetic field

- ➢ **three points** can always be connected by a **circle**
- ➢ all track parameters can be calculates → **reference track**

Radius of circle: $R_C = \frac{d_{01} d_{12} d_{02}}{2 [(\mathbf{x}_1 - \mathbf{x}_0) \times (\mathbf{x}_2 - \mathbf{x}_1)]_7}$ $2\sin(\phi_{12}-\phi_{01})$ $c =$ (and permutations)

A. Schöning (Heidelberg PI) 61 and 61 Parallelisation of Fits

Track Fit with N Hits

Possible **configuration** where all hits lie on their own reference trajectory not shown

uncertainties are

We can calculate how the track parameters change if we displace one point \mathbf{x}_{j} , β_{j} , $\mathbf{R}_{j} \rightarrow \mathbf{x}(\delta_{k})_{j}$, $\beta(\delta_{k})_{j}$, $\mathbf{R}(\delta_{k})_{j}$ (j=1,..., $\mathbf{N}_{\text{triplet}}$)

Now we can also calculate a **weight** or fit quality for small displacements $\delta_{\bf k}$

$$
\chi_j^2 = \sum_{k=0}^2 \frac{\delta_k^2}{\sigma_k^2}
$$

Idea of common fit \rightarrow combine all hit triplets with the constraint: $R_i = R$

A. Schöning (Heidelberg PI) 62 **Parallelisation of Fits**

Question to students:

Will such a fit work?

A. Schöning (Heidelberg PI) 63 Parallelisation of Fits

Correlations and triplet topologies

correlations are automatically taken into account if **consecutive** triplets are considered

A. Schöning (Heidelberg PI) 66 Parallelisation of Fits

Question to students:

How to make a constraint fit?

Method of Lagrange Multipliers

Lagrange function

$$
\mathcal{L}(x,\lambda) = f(x) - \lambda g(x)
$$

to be minimised constraint g(x)→0

Minimisation of this Lagrangian results in:

 $Df(x^*) = \lambda^{*T} Dg(x^*)$

with the partial derivatives: $D:=\frac{\partial}{\partial x}$

The minimisation results in a **system of equations** yielding the new fitted hit positions x*

Since the displacements x* are small, the system can be linearised and solved!

The Lagrange parameters $\lambda_{\rm k}$ is the rate of change of the quantity being optimized as a function of the constraint parameter (from Wikipedia)

In other words, λ^k described how well the radius/curvature is measured!

∂ *x^k*

Lagrangian for Hit Uncertainty Fit

A. Schöning (Heidelberg PI) 69 Parallelisation of Fits

Lagrangian for Hit Uncertainty Fit

How to solve the system of equations?

A. Schöning (Heidelberg PI) 70 Parallelisation of Fits

Lagrangian for Hit Uncertainty Fit

How to solve the system of equations?

A. Schöning (Heidelberg PI) 71 Parallelisation of Fits

Structure of Equations

system of equations with

$$
\mathbf{M} \cdot \begin{pmatrix} \vec{\delta} \\ \vec{\lambda} \end{pmatrix} = \begin{pmatrix} \vec{0} \\ c\vec{1} - \vec{\hat{c}} \end{pmatrix}
$$

$$
\vec{\xi}'_j = (\xi_0, \xi_{12}, \xi_3)^T_j \n\vec{\delta} = (\delta_0, \delta_1, ..., \delta_{n_{\text{hit}}-1})^T \n\vec{\lambda} = (\lambda_0, \lambda_1, ..., \lambda_{n_{\text{triplet}}-1})^T \n\vec{\hat{c}} = (\hat{c}_0, \hat{c}_1, ..., \hat{c}_{n_{\text{triplet}}-1})^T
$$

$$
\mathbf{M} = \begin{pmatrix} \mathbf{D} & \mathbf{E} \\ \mathbf{E}^{\mathbf{T}} & \mathbf{0} \end{pmatrix}
$$

\n
$$
\mathbf{D} = \text{diag}(\frac{2}{\delta_0^2}, \frac{2}{\delta_1^2}, ..., \frac{2}{\delta_{k-1}^2})
$$

\n
$$
\mathbf{E} = \begin{pmatrix} \vec{\xi}_0 & 0 & ... & 0 \\ 0 & \vec{\xi}_1^{\prime} & ... & 0 \\ ... & ... & ... & 0 \\ 0 & 0 & ... & \vec{\xi}_{n_{\text{triplet}}-1} \end{pmatrix}
$$

\n
$$
\mathbf{N}_{\text{triplet}}
$$

\nmatrix size is $\mathbf{N}_{\text{triplet}} \times \mathbf{N}_{\text{hit}}$

A. Schöning (Heidelberg PI) 72 Parallelisation of Fits
Solution

Ansatz for inverted matrix

$$
\mathbf{M}^{-1} \quad = \quad \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathbf{T}} & \mathbf{C} \end{array} \right)
$$

$$
\begin{array}{rcl}\n\mathbf{C} & = & -\left(\mathbf{E}^T \mathbf{D}^{-1} \mathbf{E}\right)^{-1} = \mathbf{C}^T \\
\mathbf{B} & = & -\mathbf{D}^{-1} \mathbf{E} \mathbf{C}\n\end{array}
$$

Task is the inversion of the matrix: $\mathbf P$

$$
= \mathbf{E}^T \, \mathbf{D}^{-1} \, \mathbf{E} \qquad \text{(rank } \mathsf{N}_{\text{trin}}
$$

 $\mathbf{P} \quad = \quad \left(\begin{array}{cccccc} p_{00} & p_{01} & p_{02} & 0 & 0 & \dots & 0 \ p_{10} & p_{11} & p_{12} & p_{13} & 0 & \dots & 0 \ p_{20} & p_{21} & p_{22} & p_{23} & p_{24} & \dots & 0 \ 0 & p_{31} & p_{32} & p_{33} & p_{34} & \dots & 0 \ 0 & 0 & p_{42} & p_{43} & p_{44} & \dots & 0 \ \dots & \dots & \dots & \dots & \dots & \dots \ 0 & 0 & 0 & 0 & 0 & \dots &$

P is a symmetric and sparse matrix. It can be inverted be the method of **Cholesky Decomposition**

usually a small matrix!

similar problem appears in the (related) broken line fit

with

A. Schöning (Heidelberg PI) 73 Parallelisation of Fits

Result

The **fitted curvature** is given by a weighted sum of the triplet curvatures:

$$
c_0 = \frac{\sum_j w_j \hat{c}_j}{\sum_j w_j}
$$
 with $w_j = -\frac{1}{2} \sum_i \mathbf{C}_{ij}$

$$
\sigma_c^{-2} = \frac{1}{2} \left(\frac{d^2 \chi^2(c)}{dc^2} \right)_{(c=c_0)} = \frac{1}{2} \sum_{i,j} (\mathbf{B}^T \mathbf{D} \mathbf{B})_{ij} = -\frac{1}{2} \sum_{i,j} \mathbf{C}_{ij}
$$

The **hit positions** are obtained from: The **correlation** between hits can be

$$
\delta_k = \sum_j B_{kj}(c - \hat{c}_j)
$$

$$
\sigma_{\text{hit},k} = \sigma_c \sum_j B_{kj}
$$

calculated as well:

$$
\mathbf{cov}_{\mathrm{hit}, kl} = \sigma_c^2 \left(\sum_j B_{kj} \right) \left(\sum_i B_{li} \right)
$$

→ the fit provides all information!

A. Schöning (Heidelberg PI) 74 Parallelisation of Fits

Cholesky Decomposition

Want to solve: $A \times B = b$

Matrix A is symmetric, so we can write:

 $A = LL^T$

with L being a left-sided matrix.

(alternatively one can also use: $A = LDL^T$

If L is known (\rightarrow next page) the matrix inversion is done by a recursive **A) forward** and **B) backward substitution:**

A)
$$
L y = b
$$
 B) $L^T x = y$

Note, this a sequential algorithm – not parallelisable!

Calculation of Matrix L

from Wikipedia

$$
\begin{aligned} L_{j,j} &= (\pm) \sqrt{A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2}, \\ L_{i,j} &= \frac{1}{L_{j,j}} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k}\right) \quad \text{for } i > j. \end{aligned}
$$

```
for (i = 0; i < dimensionSize; i++) {
   for (j = 0; j \le i; j++) {
        float sum = 0:
        for (k = 0; k < j; k++)sum += L[i][k] * L[j][k];
        if (i == i)L[i][j] = sqrt(A[i][i] - sum); else
            L[i][i] = (1.0 / L[i][i] * (A[i][i] - sum)); }
}
```
- Cholesky–Banachiewicz algorithm Note, that the algorithm needs to be executed in a predefined **sequential** order
	- In general **NxN steps** are required, costs scale as **N³** (sums)
	- However, for a **pentadiagonal matrix** the algorithm scales as **N²**
	- (Other algorithms for a tri-diagonal matrix scale as **N logN**)

Example: Calculation of L and y and x

Cholesky–Banachiewicz algorithm

For 3x3 matrix:

$$
\mathbf{L} = \begin{pmatrix} \sqrt{A_{11}} & 0 & 0 \\ A_{21}/L_{11} & \sqrt{A_{22} - L_{21}^2} & 0 \\ A_{31}/L_{11} & (A_{32} - L_{31}L_{21})/L_{22} & \sqrt{A_{33} - L_{31}^2 - L_{32}^2} \end{pmatrix}
$$

Example:

$$
A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 5 & 21 \end{pmatrix} \longrightarrow L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 4 & 2 \end{pmatrix}
$$

$$
L^{T} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{pmatrix}
$$

2
$$
L y = b
$$
:
\n
$$
\begin{pmatrix}\n1 y_0 & 0 & 0 \\
1 y_0 & 1 y_1 & 0 \\
1 y_0 & 4 y_1 & 2 y_2\n\end{pmatrix} = \begin{pmatrix}\nb_0 \\
b_1 \\
b_2\n\end{pmatrix}
$$
\n3 $L^T x = y$:
\n
$$
\begin{pmatrix}\n1 x_0 & 1 x_1 & 1 x_2 \\
0 & 1 x_1 & 4 x_2 \\
0 & 0 & 2 x_2\n\end{pmatrix} = \begin{pmatrix}\ny_0 \\
y_1 \\
y_2\n\end{pmatrix}
$$
\n
$$
x = \begin{pmatrix}\ny_0 - y_1 + 3 y_2 \\
y_1 - 4 y_2 \\
y_2\n\end{pmatrix}
$$

A. Schöning (Heidelberg PI) 77 Parallelisation of Fits

Peformance of Choleski Decomposition

Sparse Cholesky Factorization on FPGA Using Parameterized Model (Yichun Sun et al., https://doi.org/10.1155/2017/3021591)

Conclusions

- FPGA implementation is about 2 times faster for large matrices
- The FPGA runs at $O(10)$ times lower speed and consumes 50% of the power

For hit finding with O(10) hits, the gain using FPGAs is probably small

A. Schöning (Heidelberg PI) 78 Parallelisation of Fits

Summary

- **Linearisation** and **parallelisation** are very powerful methods to accelerate computations
- A new **parallelisable track fit** with hit uncertainties is presented (for 2D)
	- ➢ An extension to 3D is straight forward (not shown)
	- ➢ An extension to include multiple scattering can also easily be done (not shown) → **General Triplet Based Track Fit** (paper in preparation)
	- ➢ **Inverting** the sparse **matrix A** (e.g. Cholesky decomposition) is not parallelisable; but FPGA and GPU could maybe used for acceleration
- The proposed track fit is based on hit-triplets which are **ideal seeds for track finding** (\rightarrow graph theory)

Backup

Comparison: Triplet Fit versus GBL

Triplet Model:

fit MS angles and hit positions with respect to **reference triplets**

- Single triplets can be fitted including **MS and hit uncertainty algebraically** (not shown)
- triplets can be all fitted in **parallel** including **data preparation**
- ➔ looks like an **ideal** algorithm for track finding?
- But speed of algo not measured yet

GBL Model:

fit MS angles and hit positions with respect to a given **reference track**

Fig. 3. Particle trajectory with fitted residuals u_i and kink angles β_i .

- **GBL** is faster than **Kalman** fitter
- **GBL requires reference trajectory** as input
- ➔ therefore not suitable for track finding