## Parallelisation of (Track) Fits

#### **HighRR Lecture Week**

27. Sep. - 1. Oct .2022

DFG Deutsche Forschungsgemeinschaft

Andre Schöning (Heidelberg PI)







 $\rightarrow$  with a clear focus on algorithms



### YOU

### Parallelisability



# Overview

- Motivation
- Intro to Track Fits (Overview)
- Fitting Tracks with Hit Uncertainties
- Linearisation
- A New Hit Uncertainty Track Fit
  - > Triplet Representation (parallelisable)
  - Cholesky Decomposition (non-parallelisable)
- Summary

I will try to avoid formulas whenever possible



- low track multiplicity
- many measurement points per track
- despite some ambiguities track finding is very easy



- low track multiplicity
- many measurement points per track
- despite some ambiguities track finding is very easy

- > no physics model is needed
- > any amateur can find tracks!



- low track multiplicity
- many measurement points per track
- despite some ambiguities track finding is very easy



Parallelisation of Fits

- low track multiplicity
- many measurement points per track
- despite some ambiguities track finding is very easy

- but in the situation of sparse information the task becomes much more difficult!
- physics model (B-field, lorentz force, momentum conservation) is required to reconstruct the tracks

# Sparse Detector (Hit) Information



Knowledge helps to find (identify) tracks  $\rightarrow$  should make use of it!

## **Examples for Sparse Hit Information**

#### **Trigger:**

 → limitations from bandwidth & processing power



#### **Semiconductor Trackers:**

→ limitations from multiple scattering (resolution) & powering & costs



#### A. Schöning (Heidelberg PI)

# Track Reconstruction Example I

#### **Cellular Automaton (e.g. CBM experiment, ALICE):**



- local method based on segments
- uses mostly topological information
- parallelisable
- implemented e.g. on GPUs

#### works only if hit density is dense enough

sketch from I.Kisel

A. Schöning (Heidelberg PI)

### **Track Reconstruction Example II**

ATLAS Fast TracKer Project (2019†)



ATLAS SCT



### **Track Reconstruction Example III**

Full track fit:



### Track Reconstruction Example III

Full track fit:



#### Full glory fit (magnetic field) is computationally intensive!

# High Track Multiplicities (ATLAS)

#### Motivation for fast (& full) tracking:

- Identify special or rate track based signatures (e.g. long lived particles)
- track-assisted object reconstruction for tracker (e.g. high energy particles)

#### ATLAS Approaches



- **FTK** Project (2019†)
- **Phase II** (High Lumi-LHC) Hardware Track Trigger Project (**HTT**, 2021†)
- New: fast tracking on Event Filter (EF)
  - > option A: CPU only?
  - > option B: GPU- or FPGA- accelerated?
    - → provide highly parallel computing architectures!

#### A. Schöning (Heidelberg PI)

#### Possible to reconstruct all tracks?



ATLAS High Luminosity Inner TracKer (ITK) with **200 pileup** events at **40 MHz** collisions

**Question to students:** 

What is your favorite tracking concept or algorithm? And why?

### Chapter 2 Introduction to Track Fits

### The Master Equation



### The Master Equation

$$\chi^2 = \sum_{\text{layer } i} \frac{\Theta_{\text{MS},i}^2}{\sigma_{\theta,i}^2} + \frac{\Phi_{\text{MS},i}^2}{\sigma_{\phi,i}^2} + \sum_{\text{hits } jk} (x_j - \xi_j) V_{jk}^{-1}(x_k - \xi_k)$$

#### Problems and difficulties:

- hit error matrix V<sup>-1</sup> depends on the trajectory (result)
- scattering uncertainties and scattering angles depend on trajectory (result)
- fitted hit positions are all correlated  $\rightarrow$  **no local** processing possible
- single outliers can spoil the fit  $\rightarrow$  **iterative** outlier rejection

#### non-locality and iterations are the enemy of parallelisation

# Kálmán Filter (KF)

The Kálmán Filter is an algorithm method which combines

- track finding (aka hit linking) and
- trajectory determination (track parameter fitting)

#### Simple example:

Calculation of an average

mean value over n measurements





### Example: Asteroids

Asteroid Pallas (first found be German astronomer Heinrich Olbers in 1807)





# **Tracking of Asteroids**

Suppose we discover an asteroid!

State vector described by

$$\vec{r} = (x, y, z, v_x, v_y, v_z)$$

 $1^{st}$  measurement (11.9): → **2d** information  $2^{nd}$  measurement (21.9): → 2d+2d=**4d** information  $3^{rd}$  measurement (1.10): → 4d+2d=**6d** information

 $\rightarrow$  able to reconstruct state vector r and first guess of error matrix

 $4^{th}$  measurement (11.10): → **update** state and error matrix  $5^{th}$  measurement (21.10): → **update** state and error matrix

#### $\rightarrow$ the more measurements, the more precise!





A. Schöning (Heidelberg PI)

# Rudolf Kálmán (1930-2016)



Kálmán (emeritus ETH professor ) receiving the National Medal of Science from US president Obama in Oktober 2009.

Tracking of air-planes



#### Tracking of space crafts (NASA Apollo mission)



# Kálmán Filter Applied to Tracking

Hit linking example:



n

n+1

n-1

Properties:

- flexible
- relies on track extrapolation (works also in inhomogeneous magnetic fields)
- iterative algorithm (not parallelisable)
- results depend on the order and direction (e.g. inside-out versus outside-in tracking)

#### The Kálmán fitter is the gold standard in particle physics, nowadays

# Is there any parallelisable track fit?

### The Master Equation

$$\chi^2 = \sum_{\text{layer } i} \frac{\Theta_{\text{MS},i}^2}{\sigma_{\theta,i}^2} + \frac{\Phi_{\text{MS},i}^2}{\sigma_{\phi,i}^2} + \sum_{\text{hits } jk} (x_j - \xi_j) V_{jk}^{-1}(x_k - \xi_k)$$

Multiple scattering uncertainties dominate for:

- **low momentum** tracks (→ low energy physics)
- high precision trackers (→ instrumentation technology)

Highland formula (PDG): 
$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{\frac{x}{X_0}} \left[ 1 + 0.038 \ln(\frac{x z^2}{X_0 \beta^2}) \right]$$
 (RMS of scattering angle)

#### → A multiple scattering fit can be **parallelised**!

# The Multiple Scattering Fit

Literature:

 A New Track Reconstruction Algorithm suitable for Parallel Processing based on Hit Triplets and **Broken Lines** [AS], EPJ Web Conf. 127 (2016) 00015



 A New Three-Dimensional Track Fit with Multiple Scattering. N.Berger, M.Kiehn, A.Kozlinskyi, [AS], B NIMA 844C, 135 (2017)  $\otimes$ B 'd <sub>01</sub>  $\Phi_{\rm MS}$ fit of hit triplet: X2

→ used by **Mu3e** and **Belle2** experiments



A. Schöning (Heidelberg PI)

# The Multiple Scattering Triplet Fit

Assumptions:

- All points  $\mathbf{x}_{i-1}$ ,  $\mathbf{x}_{i}$ ,  $\mathbf{x}_{i+1}$  (instrumentation layers) are given
- the modulus of the **momentum p** of the particle is **conserved**
- the magnetic field B is constant
- the material in layer i is known



(convenient to use cylinder coordinates)

The momentum |p| is the only free (unknown) parameter of the particle

► The MS angles  $(\theta_{MS}, \phi_{MS}) \rightarrow \text{minimised}$ depend on **[p]** 

$$\chi^2 = \frac{\Theta_{MS}^2}{\sigma_{\theta}^2} + \frac{\Phi_{MS}^2}{\sigma_{\phi}^2}$$

All other parameters (e.g. direction) can be derived from triplet geometry if **[p]** is known!

# **B-Field:** The Helix

Parameterisation (Cartesian coordinates):

$$\boldsymbol{r}(t) = R \left[ \cos(2\pi t) \boldsymbol{e}_{x} + \sin(2\pi t) \boldsymbol{e}_{y} \right] + ht \boldsymbol{e}_{z}$$

In transverse plane (2D) of a magnetic field

$$R = \frac{p_{\perp}}{qB}$$

Define:

$$R_{\rm 3D} = \frac{R}{\sin(\theta)} = \frac{p}{qB}$$

invariant for MS!

Relation:

 $R_{3D}^2 = R_{2D} R_{\text{helix}}$ 

(geometric average)



 $\boldsymbol{e}_{z}$ 

В

### Solution of MS Triplet Fit

y

Calculate:

 $\sin\theta_2 =$ 

 $\Phi_{\rm MS} = \Phi_{\rm MS}(R_{\rm 3D})$  $\Theta_{\rm MS} = \Theta_{\rm MS}(R_{\rm 3D})$ 

Solution given by

$$\sin^2 \frac{\Phi_1}{2} = \frac{d_{01}^2}{4R_{3D}^2} + \frac{z_{01}^2}{R_{3D}^2} \frac{\sin^2 \Phi_1/2}{\Phi_1^2}$$
$$\sin^2 \frac{\Phi_2}{2} = \frac{d_{12}^2}{4R_{3D}^2} + \frac{z_{12}^2}{R_{3D}^2} \frac{\sin^2 \Phi_2/2}{\Phi_2^2}$$
and

 $\sin\theta_1 = \frac{d_{01}}{2R_{3D}} \operatorname{cosec}\left(\frac{z_{01}}{2R_{3D}\cos\theta_1}\right)$ 

transcendent equations

 $\frac{d_{12}}{2R_{3D}}\operatorname{cosec}\left(\frac{z_{12}}{2R_{3D}\cos\theta_2}\right)$ 

from NIMA 844C, 135 (2017)  $\odot B$ S 12 S 01 X, MS Φ Φ  $z_{12}^{}$ x transverse plane longitudinal plane

Important geometric relations for solution:

$$R_{3D}^2 = R_1^2 + \frac{z_{01}^2}{\Phi_1^2} = R_2^2 + \frac{z_{12}^2}{\Phi_2^2}$$
$$\Phi_{MS}(R_{3D}) = (\phi_{12} - \phi_{01}) - \frac{\Phi_1(R_{3D}) + \Phi_2(R_{3D})}{2}$$

A. Schöning (Heidelberg PI)

30

### Linearisation of MS Triplet Fit

- Minimisation of the  $\chi^2$ -function requires the **derivative** of **transcendent** equations ( $\rightarrow$  **OK**)
- But the derivatives are again transcendent equations; no algebraic solution ( $\rightarrow$  NOK)
- However, the functions are **analytical**  $\rightarrow$  **linearisation ansatz**

**Trick:** assume that the scattering **angles are small!** ( $\rightarrow$  good assumption)



transverse plane

#### → treat multiple scattering as small perturbation!

# Single MS Triplet Fit

3D Radius (momentum):

$$R_{3D}^{min} = -\frac{\eta \,\tilde{\Phi} \,\sin^2\vartheta + \beta \,\tilde{\Theta}}{\eta^2 \sin^2\vartheta + \beta^2}$$

independent of MS uncertainty!

Fit quality:

$$\chi^2_{min} = \frac{1}{\sigma^2_{MS}} \frac{(\beta \,\tilde{\Phi} - \eta \,\tilde{\Theta})^2}{\eta^2 + \beta^2 / \sin^2 \vartheta}$$

3D Radius uncertainty:

$$\sigma(R_{3D}) = \sigma_{MS} \sqrt{\frac{1}{\eta^2 \sin^2 \vartheta + \beta^2}}$$

Note that  $\sigma_{\rm \scriptscriptstyle MS}$  is calculated from MS-formula using above momentum result

A. Schöning (Heidelberg PI)

Geometry parameters are based on circle solution:  $\tilde{\Phi} = -\frac{1}{2}(\Phi_{1C}\alpha_1 + \Phi_{2C}\alpha_2),$  $\eta = \frac{\mathrm{d}\Phi_{MS}}{\mathrm{d}R_{3D}} = \frac{\Phi_{1C} \,\alpha_1}{2R_{3D,1C}} + \frac{\Phi_{2C} \,\alpha_2}{2R_{3D,2C}}$  $\tilde{\Theta} = \vartheta_{2C} - \vartheta_{1C} - \left( (1 - \alpha_2) \cot \vartheta_{2C} - (1 - \alpha_1) \cot \vartheta_{1C} \right)$  $\beta = \frac{\mathrm{d}\Theta_{MS}}{\mathrm{d}R_{3D}} = \frac{(1-\alpha_2)\cot\vartheta_{2C}}{R_{3D,2C}} - \frac{(1-\alpha_1)\cot\vartheta_{1C}}{R_{3D,1C}} \,.$ with index parameters:  $\alpha_1 = \frac{R_C^2 \Phi_{1C}^2 + z_{01}^2}{\frac{1}{2} R_C^2 \Phi_{1C}^3 \cot \frac{\Phi_{1C}}{2} + z_{01}^2}$  $\alpha_2 = \frac{R_C^2 \Phi_{2C}^2 + z_{12}^2}{\frac{1}{2}R_C^2 \Phi_{2C}^3 - \cot \frac{\Phi_{2C}}{2} + z_{12}^2}$ 

### **Example Spectrometer**



A. Schöning (Heidelberg PI)

### **Combination of Triplets**

#### Each triplet fit provides:

 $R_{3{
m D}\,i}\;,\;\sigma(R_{3{
m D}})_i\;,\;\chi_i^2$ 

averaging:

$$\overline{R_{3D}} = \sum_{i}^{n_{hit}-2} \frac{R_{3D,i}}{\sigma_i(R_{3D})^2} / \sum_{i}^{n_{hit}-2} \frac{1}{\sigma_i(R_{3D})^2}$$

combination:

$$\chi^2_{comb} = \sum_{i=\text{triplet}}$$

$$\chi_i^2 + \frac{(R_{3\rm D,i} - \overline{R_{3\rm D}})^2}{\sigma_i (R_{3D})^2}$$

Comments:

- every triplet is independent (hit positions are given)
- thus, all momentum measurements are independent!
- errors are uncorrelated



number of hits: N<sub>hit</sub> number of triplets: N<sub>triplet</sub> = N<sub>hit</sub>-2

Remark: track building is simple:

- connecting triplets share two hits
- connecting triplets should have compatible momenta
   → graph theory

### **Question to students**:

# What are the advantages and achievements of the MS Triplet fit?

# Chapter 3 Fitting Tracks with Hit Uncertainties
#### The Master Equation

$$\chi^2 = \sum_{\text{layer } i} \frac{\Theta_{\text{MS},i}^2}{\sigma_{\theta,i}^2} + \frac{\Phi_{\text{MS},i}^2}{\sigma_{\phi,i}^2} + \sum_{\text{hits } jk} (x_j - \xi_j) V_{jk}^{-1}(x_k - \xi_k)$$





# Fitting Tracks with Hit Uncertainties





# Fitting Tracks with Hit Uncertainties





- no B-field
- slope unknown
  - → straight line fit



# Fitting Tracks with Hit Uncertainties





- no B-field
- slope unknown
  - → straight line fit



#### Case C

- B-field > 0
- slope unknown
- momentum unknown
  - helix fit



A. Schöning (Heidelberg PI)

#### **Question to students:**

# Which of the three cases are parallelisable?

### And if yes, how?

A. Schöning (Heidelberg PI)

### Fitting a Helix to Hits with Errors

Described by a non-linear equation:

 $\boldsymbol{r}(t) = R \left[ \cos(2\pi t) \boldsymbol{e}_{x} + \sin(2\pi t) \boldsymbol{e}_{y} \right] + ht \boldsymbol{e}_{z}$ 

In general, difficult to solve:

- hit errors need to be projected on trajectory
- minimisation problem is **non-linear**

However, for the case of simple hit weights an **algebraic solution** exists for **circle** fit:

circle fit from Karimaki (1991)



#### Karimaki Circle Fit



New parameters defined:

dca = distance of closest approach to origin (aka  $d_0$ )

- $\Phi$  = initial angle at dca
- $\kappa = 1/R = curvature of radius$

Closest distance between hit and circle:

$$\varepsilon_i = \pm \left[ \sqrt{\left(x_i - a\right)^2 + \left(y_i - b\right)^2} - R \right]$$

Task: minimise  $\chi^2$  with respect to  $\rightarrow \kappa$ , dca,  $\Phi$ :

$$\chi^2 = \sum_i w_i \epsilon_i^2$$
 (w, are weights)

A. Schöning (Heidelberg PI)

#### **Parameter Transformations**

If hits are positioned close to circle:

$$\varepsilon_i \stackrel{|\varepsilon_i| \ll R}{\approx} \pm R^{-1} \left[ \left( x_i - a \right)^2 + \left( y_i - b \right)^2 - R^2 \right]$$

$$\chi^2 = \sum_i w_i \epsilon_i^2$$

Problems:

- parameters a, b, R can become very large (high momentum tracks)  $\rightarrow$  numerical unstable
- uncertainties (for example on R) are not Gaussian distributed!
- 1. Switch to polar coordinates and use new parameters:

$$\varepsilon_i = \frac{1}{2}\kappa r_i^2 - (1 + \kappa d_{ca})r_i \sin\left(\phi - \varphi_i\right) + \frac{1}{2}\kappa d_{ca}^2 + d_{ca}$$

2. simplify expression further by transforming  $\chi^2$  function:

 $\chi^{2} = (1 + \kappa d_{ca}) \hat{\chi}^{2}$  $\varepsilon_{i} = (1 + \kappa d_{ca}) \eta_{i}$ aı

and minimisation of



result depends now weakly on position of origin!

A. Schöning (Heidelberg PI)

#### Results



#### Geometry parameters:

$$q_{1} = C_{r^{2}r^{2}}C_{xy} - C_{xr^{2}}C_{yr^{2}}$$

$$q_{2} = C_{r^{2}r^{2}}(C_{xx} - C_{yy}) - C_{xr^{2}}^{2} + C_{yr^{2}}^{2}$$

$$\phi = 1/2\arctan(2q_{1}/q_{2})$$

$$\beta = (\sin\phi C_{xr^{2}} - \cos\phi C_{yr^{2}})/C_{r^{2}r^{2}}$$

$$\delta = -\beta \langle r^{2} \rangle + \sin\phi \langle x \rangle - \cos\phi \langle y \rangle$$

$$C_{pq} \text{ are the covariance of samples } p \text{ and } q$$

Fit quality (only approximate):

 $\chi^{2} = S_{w} \left(1 + \kappa d_{ca}\right)^{2} \left(\sin^{2} \phi C_{xx} - 2\sin \phi \cos \phi C_{xy} + \cos^{2} \phi C_{yy} - \kappa^{2} C_{r^{2}r^{2}}\right)$ 

- non-iterative track fit
- provides error matrix (not shown)
- complexity of calculation a bit higher than for MS fit (but different regime)

A. Schöning (Heidelberg PI)

#### **Question for students:**

### What are the advantages of the circle fit? What are the difficulties for parallelisation?

### Helix Fit with Karimaki

"2.5D tracking": fit transverse and longitudinal plane separately:

![](_page_46_Figure_2.jpeg)

→ hit correlations between transverse and longitudinal plane are not considered!

A. Schöning (Heidelberg PI)

#### **Comparing Results**

plot from NIMA 844C, 135 (2017) (aka MS-fit)

![](_page_47_Figure_2.jpeg)

GBL=General Broken Line V. Blobel, NIMA, 566 (2006) 14.

 $\vartheta = 70^{\circ}$ (Karimaki) Single Helix Rel. momentum resolution / % (MS-fit) Triplets GBL (Helix) 2.4**GBL** (Triplets) 2.2 hit uncertainties MS dominates dominate 0 1000 2000 3000 4000 5000 Momentum / MeV/c

- MS-fit is 2-5 times faster than Karimäki
- GBL is about O(100) slower than the others

A. Schöning (Heidelberg PI)

2.6

#### Chapter 4 Linearisation

#### Linearisation & Linear Fit

![](_page_49_Figure_1.jpeg)

If a reference trajectory close to the final resolution is given, the problem can be **linearised** by treating the hit displacements as **small corrections** 

- 1. calculate hit positions and pulls with respect to reference trajectory
- 2. update **position**  $\overline{x}$ , **slope**  $\beta$ , **curvature radius R** (momentum)
- 3. can be **repeated** (iterated) for high **precision**

### Applications

#### Linearised track fit is a good approach if

- the **track parameters** are **roughly known** by a previous reconstruction step (e.g. pattern match, other track finding techniques)
- Tracks are known to be roughly **straight lines** (no B-field, high momentum tracks)

Example: ATLAS FTK & HTT track trigger projects (similar project in CMS)

![](_page_50_Picture_5.jpeg)

- The different roads describe/contain bundles of similar trajectories
- > The roads provide an **initial guess** of the **track parameters**

#### Linearisation of a Circle/Helix Fit

Given a list of *p* track parameters (e.g. *R*,  $\Phi$ , *dca*,  $\theta$ , *z*<sub>0</sub>):

 $p_{i}^{true}, i=1,...,p$ 

and *N* hit displacements with respect to reference orbit:

 $\delta x_{\mathbf{j}} = x_{\mathbf{j}} - \overline{x}_{\mathbf{j}}$ 

Then the track is linearised using:

 $p_{\mathbf{i}} = \Sigma_{\mathbf{j}=1}^{N} A_{\mathbf{i}\mathbf{j}} \delta x_{\mathbf{j}} + \overline{p}_{\mathbf{i}}$ 

with coefficients  $A_{ii}$  (matrix of N x p coefficients)

Example for coefficients (weights): hit positions: value slope beta value radius/curvature

position

Parallelisation of Fits

### Linearisation of Fit Quality

#### For track finding (good/bad) or a track trigger the fit quality is crucial!

The calculation of the chi2 function can also be linearised using a principal component analysis:

$$\chi_i = \sum_{j=1}^N B_{ij} \delta x_j$$
$$\chi^2 = \sum_{i=1}^{N-p} \chi_i^2$$

The coefficients  $B_{ii}$  can be represented by a **N x (N-p)** matrix.

- Example: p=5 parameters, N=12 hits  $\rightarrow$  84 parameters
- not all coefficients are significant
- clever choice of parameters can reduce the complexity ( $\rightarrow$  extra slide)

#### Example: ATLAS HTT

#### **Pattern Recognition Mezzanine**

![](_page_53_Picture_2.jpeg)

#### **Example: ATLAS HTT**

![](_page_54_Figure_1.jpeg)

A. Schöning (Heidelberg PI)

#### **Question to students:**

What do you consider is most challenging and technologically ambitious in this design?

### **Best Fitting Parameters?**

- The fitted value and its uncertainty and also the correlations depend on the choice of the **coordinate system**!
- a wrong coordinate system choice can lead to large non-linearities
- it is also possible to redefine parameters which behave better in the fit

e.g. 
$$z' = z - \cot(\theta)(R - R') - \frac{\cot(\theta)R^3}{6(2\rho)^2}$$

from [arXiv:1809.01467]

best fit

 $1\sigma$  envelop

7

### Chapter 5 A New Hit Uncertainty Track Fit

#### Recap

Full track fit:

$$\chi^2 = \sum_{\text{layer } i} \frac{\Theta_{\text{MS},i}^2}{\sigma_{\theta,i}^2} + \frac{\Phi_{\text{MS},i}^2}{\sigma_{\phi,i}^2} + \sum_{\text{hits } jk} (x_j - \xi_j) V_{jk}^{-1}(x_k - \xi_k)$$

#### includes multiple scattering and hit uncertainties

- MS fit alone can be parallelised
- This parallelisation is based in hit triplets
- Hit uncertainty fit can be **linearised** 
  - $\rightarrow$  good for parallisation
- But linearisation needs a **reference** trajectory

A. Schöning (Heidelberg PI)

![](_page_58_Picture_12.jpeg)

#### **Question to students:**

#### What is the next logical step?

A. Schöning (Heidelberg PI)

### **Hit Triplets**

- A hit triplet is the smallest tracking element which contains all track parameter information
- The **precision** of the triplet track parameters depend on the **lever arm** (size)
- For track finding, triplets are often used as **seeds** (combinatorics is small):

seed finding = triplet finding!

#### Easy reconstruction in homogeneous magnetic field

- three points can always be connected by a circle
- > all track parameters can be calculates  $\rightarrow$  reference track

![](_page_60_Figure_8.jpeg)

(and permutations)

A. Schöning (Heidelberg PI)

#### Track Fit with N Hits

Possible **configuration** where all hits lie on their own reference trajectory

uncertainties are not shown

![](_page_61_Figure_3.jpeg)

We can calculate how the track parameters change if we displace one point  $\overline{x}_{j}, \beta_{j}, R_{j} \rightarrow \overline{x}(\delta_{k})_{j}, \beta(\delta_{k})_{j}, R(\delta_{k})_{j}$  (j=1,..., N<sub>triplet</sub>)

Now we can also calculate a **weight** or fit quality for small displacements  $\delta_{k}$ 

$$\chi_j^2 = \sum_{k=0}^2 \frac{\delta_k^2}{\sigma_k^2} \quad \text{hit pull}$$

Idea of common fit  $\rightarrow$  combine all hit triplets with the constraint:  $R_i = R$ 

A. Schöning (Heidelberg PI)

![](_page_62_Picture_0.jpeg)

#### **Question to students:**

#### Will such a fit work?

#### Correlations and triplet topologies

![](_page_63_Figure_1.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_65_Figure_0.jpeg)

correlations are automatically taken into account if **consecutive** triplets are considered

A. Schöning (Heidelberg PI)

#### Question to students:

#### How to make a constraint fit?

#### Method of Lagrange Multipliers

#### Lagrange function

$$\mathcal{L}(x,\lambda) = f(x) - \lambda g(x)$$
to be minimised constraint g(x)  $\rightarrow$  0

Minimisation of this Lagrangian results in:

 $Df(x^*) = \lambda^{*T} Dg(x^*)$ 

with the partial derivatives:  $D := \frac{\partial}{\partial x_k}$ 

The minimisation results in a **system of equations** yielding the new fitted hit positions  $x^*$ 

#### Since the displacements x<sup>\*</sup> are small, the system can be linearised and solved!

![](_page_67_Figure_8.jpeg)

The Lagrange parameters  $\lambda_k$  is the rate of change of the quantity being optimized as a function of the constraint parameter (from Wikipedia)

#### In other words, $\lambda_k$ described how well the radius/curvature is measured!

#### Lagrangian for Hit Uncertainty Fit

![](_page_68_Figure_1.jpeg)

A. Schöning (Heidelberg PI)

### Lagrangian for Hit Uncertainty Fit

![](_page_69_Figure_1.jpeg)

How to solve the system of equations?

### Lagrangian for Hit Uncertainty Fit

![](_page_70_Figure_1.jpeg)

How to solve the system of equations?

#### Structure of Equations

system of equations

$$\mathbf{M} \cdot \left(\begin{array}{c} \vec{\delta} \\ \vec{\lambda} \end{array}\right) = \left(\begin{array}{c} \vec{0} \\ c\vec{1} - \vec{c} \end{array}\right)$$

$$\vec{\xi}'_{j} = (\xi_{0}, \xi_{12}, \xi_{3})^{T}_{j}$$

$$\vec{\delta} = (\delta_{0}, \delta_{1}, ..., \delta_{n_{\text{hit}}-1})^{T}$$

$$\vec{\lambda} = (\lambda_{0}, \lambda_{1}, ..., \lambda_{n_{\text{triplet}}-1})^{T}$$

$$\vec{\hat{c}} = (\hat{c}_{0}, \hat{c}_{1}, ..., \hat{c}_{n_{\text{triplet}}-1})^{T}$$

with

$$\mathbf{M} = \begin{pmatrix} \mathbf{D} & \mathbf{E} \\ \mathbf{E}^{\mathbf{T}} & \mathbf{0} \end{pmatrix}$$
$$\mathbf{D} = \operatorname{diag}\left(\frac{2}{\delta_0^2}, \frac{2}{\delta_1^2}, \dots, \frac{2}{\delta_{k-1}^2}\right)$$
$$\mathbf{E} = \begin{pmatrix} \vec{\xi}_0^{\prime} & 0 & \dots & 0 \\ 0 & \vec{\xi}_1^{\prime} & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & \vec{\xi}_{n_{\mathrm{triplet}}-1}^{\prime} \end{pmatrix} \end{pmatrix} n_{\mathrm{hit}}$$
$$\mathbf{N}_{\mathrm{triplet}}$$
matrix size is  $\mathbf{N}_{\mathrm{triplet}} \times \mathbf{N}_{\mathrm{hit}}$ Parallelisation of Fits
### Solution

Ansatz for inverted matrix

 $\mathbf{M^{-1}} = \left( egin{array}{cc} \mathbf{A} & \mathbf{B} \ \mathbf{B^T} & \mathbf{C} \end{array} 
ight)$ 

$$\mathbf{C} = - \left( \mathbf{E}^T \, \mathbf{D}^{-1} \, \mathbf{E} \right)^{-1} = \mathbf{C}^T$$
$$\mathbf{B} = -\mathbf{D}^{-1} \, \mathbf{E} \, \mathbf{C}$$

Task is the inversion of the matrix:

$$= \mathbf{E}^T \mathbf{D}^{-1} \mathbf{E}$$
 (rank N<sub>trir</sub>

 $\mathbf{P} = \begin{pmatrix} p_{00} & p_{01} & p_{02} & 0 & 0 & \dots & 0 \\ p_{10} & p_{11} & p_{12} & p_{13} & 0 & \dots & 0 \\ p_{20} & p_{21} & p_{22} & p_{23} & p_{24} & \dots & 0 \\ 0 & p_{31} & p_{32} & p_{33} & p_{34} & \dots & 0 \\ 0 & 0 & p_{42} & p_{43} & p_{44} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & p_{n-1,n-1} \end{pmatrix}$ 

P is a symmetric and sparse matrix. It can be inverted be the method of **Cholesky Decomposition** 

usually a small matrix!

#### similar problem appears in the (related) broken line fit

with

 $\mathbf{P}$ 

A. Schöning (Heidelberg PI)

### Result

The **fitted curvature** is given by a weighted sum of the triplet curvatures:

$$c_{0} = \frac{\sum_{j} w_{j} \hat{c}_{j}}{\sum_{j} w_{j}} \quad \text{with} \quad w_{j} = -\frac{1}{2} \sum_{i} \mathbf{C}_{ij}$$
$$\sigma_{c}^{-2} = \frac{1}{2} \left( \frac{\mathrm{d}^{2} \chi^{2}(c)}{\mathrm{d}c^{2}} \right)_{(c=c_{0})} = \frac{1}{2} \sum_{i,j} (\mathbf{B}^{T} \mathbf{D} \mathbf{B})_{ij} = -\frac{1}{2} \sum_{i,j} \mathbf{C}_{ij}$$

The **hit positions** are obtained from:

$$\delta_k = \sum_j B_{kj}(c - \hat{c}_j)$$
  
$$\sigma_{\text{hit},k} = \sigma_c \sum_j B_{kj}$$

The **correlation** between hits can be calculated as well:

$$\mathbf{cov}_{\mathrm{hit},kl} = \sigma_c^2 \left(\sum_j B_{kj}\right) \left(\sum_i B_{li}\right)$$

→ the fit provides all information!

A. Schöning (Heidelberg PI)

Parallelisation of Fits

## **Cholesky Decomposition**

Want to solve: A x = b

Matrix A is symmetric, so we can write:  $A = L L^{T}$ 

with L being a left-sided matrix.

(alternatively one can also use:  $A = LDL^{T}$ 

If L is known (→ next page)
the matrix inversion is done by a recursive
A) forward and
B) backward substitution:

**A)** 
$$L \ y = b$$
 **B)**  $L^T \ x = y$ 

Note, this a sequential algorithm - not parallelisable!

| A. | Schöning | (Heidelberg | PI) |
|----|----------|-------------|-----|
|----|----------|-------------|-----|

|                     | (A                                                     | Δ                                                       | * Δ*                                                     | A.                                                      | ſ                                       | x. ]                      | ſ           | b,                |                                          |                                                         |                                                          |
|---------------------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|---------------------------|-------------|-------------------|------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
|                     | A                                                      | 11 A                                                    | <sup>21</sup> A <sup>3</sup>                             | A <sup>*</sup> <sub>42</sub>                            |                                         | X2                        |             | b <sub>2</sub>    |                                          |                                                         |                                                          |
|                     | A                                                      | 31 A                                                    | <sub>32</sub> A <sub>33</sub>                            | A*43                                                    | *                                       | x <sub>3</sub>            | =           | b <sub>3</sub>    |                                          |                                                         |                                                          |
|                     | A                                                      | 41 A                                                    | 42 A <sub>43</sub>                                       | A <sub>44</sub>                                         |                                         | X <sub>4</sub>            |             | b <sub>4</sub>    |                                          |                                                         |                                                          |
|                     |                                                        |                                                         |                                                          |                                                         |                                         |                           |             |                   |                                          |                                                         |                                                          |
|                     |                                                        |                                                         |                                                          |                                                         |                                         |                           |             |                   |                                          |                                                         |                                                          |
| 11                  | A* <sub>21</sub>                                       | A* <sub>31</sub>                                        | A*41                                                     | LII                                                     | 0                                       | 0                         | 0           | (L <sub>11</sub>  | L* <sub>21</sub>                         | L* <sub>31</sub>                                        | L*41                                                     |
| -11                 | A* <sub>21</sub><br>A <sub>22</sub>                    | A* <sub>31</sub><br>A* <sub>32</sub>                    | A* <sub>41</sub><br>A* <sub>42</sub>                     | L <sub>11</sub>                                         | 0<br>L <sub>22</sub>                    | 0<br>0                    | 0           | * L <sub>11</sub> | L* <sub>21</sub><br>L <sub>22</sub>      | L* <sub>31</sub><br>L* <sub>32</sub>                    | L*41<br>L*42                                             |
| -<br>11<br>21<br>31 | A* <sub>21</sub><br>A <sub>22</sub><br>A <sub>32</sub> | A* <sub>31</sub><br>A* <sub>32</sub><br>A <sub>33</sub> | A* <sub>41</sub><br>A* <sub>42</sub><br>A* <sub>43</sub> | = L <sub>11</sub><br>L <sub>21</sub><br>L <sub>31</sub> | 0<br>L <sub>22</sub><br>L <sub>32</sub> | 0<br>0<br>L <sub>33</sub> | 0<br>0<br>0 | * 0<br>0          | L* <sub>21</sub><br>L <sub>22</sub><br>0 | L* <sub>31</sub><br>L* <sub>32</sub><br>L <sub>33</sub> | L* <sub>41</sub><br>L* <sub>42</sub><br>L* <sub>43</sub> |

### Calculation of Matrix L

from Wikipedia

#### Cholesky–Banachiewicz algorithm

$$egin{aligned} L_{j,j} &= (\pm) \sqrt{A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2}, \ L_{i,j} &= rac{1}{L_{j,j}} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k}
ight) & ext{ for } i > j. \end{aligned}$$

```
for (i = 0; i < dimensionSize; i++) {
    for (j = 0; j <= i; j++) {
        float sum = 0;
        for (k = 0; k < j; k++)
            sum += L[i][k] * L[j][k];
        if (i == j)
            L[i][j] = sqrt(A[i][i] - sum);
        else
            L[i][j] = (1.0 / L[j][j] * (A[i][j] - sum));
    }
}</pre>
```

- Note, that the algorithm needs to be executed in a predefined sequential order
- In general NxN steps are required, costs scale as N<sup>3</sup> (sums)
- However, for a pentadiagonal matrix the algorithm scales as N<sup>2</sup>
- (Other algorithms for a <u>tri-diagonal</u> matrix scale as **N logN**)

## Example: Calculation of L and y and x

Cholesky–Banachiewicz algorithm

For 3x3 matrix:

$$\mathbf{1} \quad \mathbf{L} = \begin{pmatrix} \sqrt{A_{11}} & 0 & 0 \\ A_{21}/L_{11} & \sqrt{A_{22} - L_{21}^2} & 0 \\ A_{31}/L_{11} & (A_{32} - L_{31}L_{21})/L_{22} & \sqrt{A_{33} - L_{31}^2 - L_{32}^2} \end{pmatrix}$$

Example:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 5 & 21 \end{pmatrix} \implies L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 4 & 2 \end{pmatrix}$$
$$L^{T} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$

2 
$$L y = b$$
:  

$$\begin{pmatrix}
1 y_0 & 0 & 0 \\
1 y_0 & 1 y_1 & 0 \\
1 y_0 & 4 y_1 & 2 y_2
\end{pmatrix} = \begin{pmatrix}
b_0 \\
b_1 \\
b_2
\end{pmatrix}$$

$$y = \begin{pmatrix}
b_0 \\
b_0 - b_1 \\
1/2 b_2 + 3/2 b_1 - 2 b_0
\end{pmatrix}$$
3  $L^T x = y$ :  

$$\begin{pmatrix}
1 x_0 & 1 x_1 & 1 x_2 \\
0 & 1 x_1 & 4 x_2 \\
0 & 0 & 2 x_2
\end{pmatrix} = \begin{pmatrix}
y_0 \\
y_1 \\
y_2
\end{pmatrix}$$

$$x = \begin{pmatrix}
y_0 - y_1 + 3 y_2 \\
y_1 - 4 y_2 \\
y_2
\end{pmatrix}$$

A. Schöning (Heidelberg PI)

Parallelisation of Fits

## Peformance of Choleski Decomposition

Sparse Cholesky Factorization on FPGA Using Parameterized Model (Yichun Sun et al., https://doi.org/10.1155/2017/3021591)

|             |                  | CPU                | <b>CPU-GPU</b>    | FPGA (200MHz)             |
|-------------|------------------|--------------------|-------------------|---------------------------|
|             | Matrix           | HSL_MA87 times (s) | CHOLMOD times (s) | Ours                      |
| different 🗸 | nd3k             | 2.02               | 2.92              | 1.96 (m = 2, k = 256)     |
| big         | nd24k            | 28.56              | 22.17             | 10.08 ( $m = 8, k = 32$ ) |
| mainces     | Trefethen_20000b | 12.63              | 8.49              | $3.58 \ (m=4, k=64)$      |

Conclusions

- FPGA implementation is about 2 times faster for large matrices
- The FPGA runs at O(10) times lower speed and consumes 50% of the power

#### For hit finding with O(10) hits, the gain using FPGAs is probably small

A. Schöning (Heidelberg PI)

# Summary

- Linearisation and parallelisation are very powerful methods to accelerate computations
- A new parallelisable track fit with hit uncertainties is presented (for 2D)
  - An extension to 3D is straight forward (not shown)
  - An extension to include multiple scattering can also easily be done (not shown)
     → General Triplet Based Track Fit (paper in preparation)
  - Inverting the sparse matrix A (e.g. Cholesky decomposition) is not parallelisable; but FPGA and GPU could maybe used for acceleration
- The proposed track fit is based on hit-triplets which are ideal seeds for track finding (→ graph theory)

# Backup

# Comparison: Triplet Fit versus GBL

### Triplet Model:

fit MS angles and hit positions with respect to **reference triplets** 



- Single triplets can be fitted including MS and hit uncertainty algebraically (not shown)
- triplets can be all fitted in **parallel** including **data preparation**
- Iooks like an ideal algorithm for track finding?
- But speed of algo not measured yet

### GBL Model:

fit MS angles and hit positions with respect to a given **reference track** 



Fig. 3. Particle trajectory with fitted residuals  $u_i$  and kink angles  $\beta_i$ .

- GBL is faster than Kalman fitter
- GBL requires **reference trajectory** as input
- therefore not suitable for track finding