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→ with a clear focus on algorithms



A. Schöning (Heidelberg PI) 2 Parallelisation of Fits

YOU

ME



A. Schöning (Heidelberg PI) 3 Parallelisation of Fits

Parallelisability

T
A
S
K

S
O
L
U
T
I
O
N



A. Schöning (Heidelberg PI) 4 Parallelisation of Fits

Overview

● Motivation 
● Intro to Track Fits (Overview)
● Fitting Tracks with Hit Uncertainties
● Linearisation
● A New Hit Uncertainty Track Fit

➢ Triplet Representation (parallelisable)
➢ Cholesky Decomposition (non-parallelisable) 

● Summary
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I will try to avoid formulas whenever possible
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What do you see?
Drift chamber hits of the H1 experiment 
(1991-2007) 

● low track multiplicity
● many measurement points per track
● despite some ambiguities track 

finding is very easy
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What do you see?
Drift chamber hits of the H1 experiment 
(1991-2007) 

● low track multiplicity
● many measurement points per track
● despite some ambiguities track 

finding is very easy

➢ no physics model is needed
➢ any amateur can find tracks!
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What do you see?
Drift chamber hits of the H1 experiment 
(1991-2007) 

● low track multiplicity
● many measurement points per track
● despite some ambiguities track 

finding is very easy

subset 
of hits
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What do you see?
Drift chamber hits of the H1 experiment 
(1991-2007) 

● low track multiplicity
● many measurement points per track
● despite some ambiguities track 

finding is very easy

➢ but in the situation of sparse information
the task becomes much more difficult!

➢ physics model (B-field, lorentz force, 
momentum conservation) is required 
to reconstruct the tracks

subset 
of hits
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Sparse Detector (Hit) Information

Knowledge helps to find (identify) tracks → should make use of it!
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Examples for Sparse Hit Information
Trigger: 
→ limitations from bandwidth 
     & processing power

FTT = Fast Track Trigger

Semiconductor Trackers: 
→ limitations from multiple scattering
     (resolution) & powering & costs

Mu3e: only four (pixel) tracking layers
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Track Reconstruction Example I
Cellular Automaton (e.g. CBM experiment, ALICE):

sketch from I.Kisel

● local method based on segments
● uses mostly topological information
● parallelisable
● implemented e.g. on GPUs

works only if hit density is dense enough
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Track Reconstruction Example II
ATLAS Fast TracKer Project (2019†) ATLAS SCT

● pattern lookup technique
(approximation)

● pre-calculated roads 
(from simulation)

● parallelisable and fast
● implemented in ASICs (AMchip)→ trigger

→ templates
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Track Reconstruction Example III
Full track fit:

includes multiple scattering and hit uncertainties

(θ
MS

,Ф
MS

)

(x , y)

not best option
to fit all track
hypothesis

B
field 

= 0

i i+1 i+2
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Track Reconstruction Example III

includes multiple scattering and hit uncertainties

Full glory fit (magnetic field) is computationally intensive!

not best option
to fit all track
hypothesis

B
field 

≠ 0

i i+1 i+2

Full track fit:

(θ
MS

,Ф
MS

)

(x , y)
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High Track Multiplicities (ATLAS)

ATLAS High Luminosity Inner TracKer (ITK) 
with 200 pileup events at 40 MHz collisions 

Motivation for fast (& full) tracking:
● Identify special or rate track based

signatures (e.g. long lived particles)
● track-assisted object reconstruction

for tracker (e.g. high energy particles)

simulated

ATLAS Approaches 
● FTK Project (2019†)
● Phase II (High Lumi-LHC) Hardware

Track Trigger Project (HTT, 2021†)
● New: fast tracking on Event Filter (EF)

➢ option A: CPU only?
➢ option B: GPU- or FPGA- accelerated?

→ provide highly parallel computing architectures!

Possible to reconstruct all tracks?
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Question to students:

What is your favorite tracking 
concept or algorithm? 

And why?
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Chapter 2
Introduction to Track Fits
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The Master Equation

MS dominates
hit uncertainties
dominate



A. Schöning (Heidelberg PI) 19 Parallelisation of Fits

The Master Equation

Problems and difficulties:
● hit error matrix V-1 depends on the trajectory (result)
● scattering uncertainties and scattering angles depend on trajectory (result)
● fitted hit positions are all correlated → no local processing possible
● single outliers can spoil the fit  → iterative outlier rejection

non-locality and iterations are the enemy of parallelisation
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Kálmán Filter (KF)
The Kálmán Filter is an algorithm method which combines 
● track finding (aka hit linking) and 
● trajectory determination (track parameter fitting)

Simple example:
Calculation of an average

from I.Kisel

Note, the KF as such 
does not implement 
any physics!
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Example: Asteroids

Asteroid Pallas 
(first found be German astronomer 
Heinrich Olbers in 1807)
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Tracking of Asteroids
Suppose we discover an asteroid!

State vector described by

 

1st  measurement (11.9): → 2d information
2nd measurement (21.9): → 2d+2d=4d information
3rd measurement (1.10): → 4d+2d=6d information 

→ able to reconstruct state vector r 
     and first guess of error matrix
 

4th measurement (11.10): → update state and error matrix
5th measurement (21.10): → update state and error matrix
...

r⃗ = (x , y , z , v x , v y , v z)

→ the more measurements, the more precise!

position

# measurements
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Rudolf Kálmán (1930-2016)

Kálmán (emeritus ETH professor ) receiving the 
National Medal of Science from US president 
Obama in Oktober 2009.

Tracking of air-planes

from Niranjan Gavade

Tracking of space crafts (NASA Apollo mission)
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Kálmán Filter Applied to Tracking

n n+1

χ
2
(n)

χB
2
(n+1)

A

B

χA
2
(n+1)

Properties:
● flexible
● relies on track extrapolation (works also in inhomogeneous magnetic fields)
● iterative algorithm (not parallelisable)
● results depend on the order and direction (e.g. inside-out versus outside-in tracking)

Hit linking example:

n-1

 The Kálmán fitter is the gold standard in particle physics, nowadays 
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Is there any parallelisable track fit?



A. Schöning (Heidelberg PI) 26 Parallelisation of Fits

The Master Equation

Multiple scattering uncertainties dominate for:
● low momentum tracks (→low energy physics)
● high precision trackers (→instrumentation technology)

Highland formula (PDG):
(RMS of scattering angle)

→ A multiple scattering fit can be parallelised!
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The Multiple Scattering Fit
Literature:
● A New Track Reconstruction Algorithm suitable for 

Parallel Processing based on Hit Triplets and 
Broken Lines 
[AS], EPJ Web Conf. 127 (2016) 00015

● A New Three-Dimensional Track Fit with Multiple Scattering, 
N.Berger, M.Kiehn, A.Kozlinskyi, [AS], 
NIMA 844C, 135 (2017)

fit of hit triplet:

→ used by Mu3e and Belle2 experiments

factorisation!
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The Multiple Scattering Triplet Fit
Assumptions:
● All points x

i-1
, x

i
, x

i+1
 (instrumentation layers) are given

● the modulus of the  momentum p of the particle is conserved
● the magnetic field B is constant
● the material in layer i is known

➢ The momentum |p| is the only free 
(unknown) parameter of the particle

➢ The MS angles  (θ
MS

 ,Ф
MS

)→minimised

depend on |p|

➢ All other parameters (e.g. direction) can be
derived from triplet geometry if |p| is known! 

i i+1i-1

x
i-1 x

i
x

i+1
|p| |p|

(θMS,ФMS)

(convenient to use cylinder coordinates)
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B-Field: The Helix

R
helix

In transverse plane (2D) of a magnetic field

R=R
2D

Define:

B

invariant for MS!

r (t) = R [cos (2π t )ex+ sin (2π t )e y ] + h t e z

Parameterisation (Cartesian coordinates):

h

e z

ex

e y

Relation:

R3 D
2

= R2 D Rhelix (geometric average)
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Solution of MS Triplet Fit
Calculate:

Important geometric relations for solution:

Solution given by

and

→  transcendent equations

transverse plane

longitudinal plane

from NIMA 844C, 135 (2017)
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Linearisation of MS Triplet Fit
● Minimisation of the χ2-function requires the derivative of transcendent equations (→ OK)
● But the derivatives are again transcendent equations; no algebraic solution  (→ NOK) 
● However, the functions are analytical → linearisation ansatz

Trick: assume that the scattering angles are small!  (→ good assumption)

transverse plane

x
0

x
1

x
2

Radius of approximated circle :

→ treat multiple scattering as small perturbation!
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Single MS Triplet Fit

Fit quality:

Geometry parameters are based on circle solution:

with index
parameters:

3D Radius (momentum):

3D Radius uncertainty:

Note that σ
MS

 is calculated from MS-formula
using above momentum result

independent
of MS uncertainty!
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Example Spectrometer

small bending
index α

2
 ~ 1

large bending
index α

2
 << 1

small bending

large bending

Relative momentum resolution σ
p
 / p (a.u.)

polar angle 

b
e

n
d
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g

 a
n

g
le
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Combination of Triplets

number of hits:      N
hit

  
number of triplets:  N

triplet
 = N

hit
-2

combination:

averaging:

Each triplet fit provides:

Comments:
● every triplet is independent (hit positions are given)
● thus, all momentum measurements are independent!
● errors are uncorrelated

Remark: track building is simple:
➢ connecting triplets share two hits
➢ connecting triplets should have compatible

momenta
→ graph theory
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Question to students: 

What are the advantages and 
achievements

of the MS Triplet fit?
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Chapter 3
Fitting Tracks with Hit Uncertainties
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The Master Equation

MS dominates
hit uncertainties
dominate
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Fitting Tracks with Hit Uncertainties
Case A
● no B-field
● no slope

➔  averaging

(no multiple scattering)

x̄ =∑hits i
x i wi

x = x̄

x

z
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Fitting Tracks with Hit Uncertainties
Case A
● no B-field
● no slope

➔  averaging

Case B
● no B-field
● slope unknown

➔  straight line fit

(no multiple scattering)

x̄ =∑hits i
x i wi

x̄ =∑hits i
x i wi

x = x̄ + β(z− z̄ )
β =

Cov (Z , X )

Var (Z )

x = x̄

x

z
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Fitting Tracks with Hit Uncertainties
Case A
● no B-field
● no slope

➔  averaging

Case C
● B-field > 0
● slope unknown
● momentum unknown

➔ helix fit

Case B
● no B-field
● slope unknown

➔  straight line fit

(no multiple scattering)

x̄ =∑hits i
x i wi

x̄ =∑hits i
x i wi

x = x̄ + β(z− z̄ )
β =

Cov (Z , X )

Var (Z )

x̄ =∑hits i
x i wi

β = ...

R = ...x =x (z ; x̄ ,β , R)

x = x̄

x

z
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Question to students: 

Which of the three cases
are parallelisable?

And if yes, how?
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Fitting a Helix to Hits with Errors
Described by a non-linear equation:

r (t) = R [cos (2π t )ex+ sin (2π t )e y ] + h t e z

In general, difficult to solve:
● hit errors need to be projected on trajectory
● minimisation problem is non-linear

However, for the case of simple hit weights

an algebraic solution exists for circle fit:
➢ circle fit from Karimaki (1991)
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Karimaki Circle Fit
New parameters defined:

dca = distance of closest approach to origin
          (aka d

0
)

Φ = initial angle at dca

ĸ = 1/R = curvature of radius

Closest distance between hit and circle:

 

Task: minimise χ2 with respect to →ĸ, dca, Φ:

plots from 
J. Nauman (1999) o

(w
i
 are weights)
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Parameter Transformations
If hits are positioned close to circle:

Problems: 
● parameters a, b, R can become very large (high momentum tracks) → numerical unstable
● uncertainties (for example on R) are not Gaussian distributed!

1. Switch to polar coordinates and use new parameters:

2. simplify expression further by transforming χ2 function:

and minimisation of

result depends now weakly on position of origin!
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Results
Parameters: Geometry parameters: 

C
pq

 are the covariance of samples p and q

Fit quality (only approximate):

● non-iterative track fit
● provides error matrix (not shown)
● complexity of calculation a bit higher than for MS fit (but different regime)
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Question for students: 

What are the advantages 
of the circle fit?

What are the difficulties for
parallelisation?
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Helix Fit with Karimaki
“2.5D tracking”: fit transverse and longitudinal plane separately:

x

y

z

s

tanΘ = Δ s /Δ z

transverse plane longitudinal plane

r ( t ) = R [cos(2π t )ex+ sin(2π t )e y ]

+ h t e z

s = 2 πR t

x-y fit provides:
● R = radius
● Φ = azimuth at dca
● dca = distance of closest approch

s-z fit provides:
● abscissa z

0
 

●

→ hit correlations between transverse and longitudinal plane are not considered!

χ2
cicle

χ2
s-z line
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Comparing Results

MS dominates
hit uncertainties
dominate

(Karimaki)
(MS-fit)

GBL=General Broken Line
V. Blobel, NIMA, 566 (2006) 14.

plot from NIMA 844C, 135 (2017)
(aka MS-fit)

x/X
0
 = 2% per layer

B-field=2Tesla 

● MS-fit is 2-5 times faster than Karimäki
● GBL is about O(100) slower than the others 
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Chapter 4
Linearisation
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Linearisation & Linear Fit
B) non-homogeneous magnetic field 
→ no helix (circle)

A) homogeneous magnetic field 
→ helix (circle)

● reference trajectories
● fitted trajectories

If a reference trajectory close to the final resolution is given, the problem
can be linearised by treating the hit displacements as small corrections 

1.calculate hit positions and pulls with respect to reference trajectory

2.update position x , slope β , curvature radius R (momentum)

3.can be repeated (iterated) for high precision 
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Applications
Linearised track fit is a good approach if 
● the track parameters are roughly known by a previous reconstruction step 

(e.g. pattern match, other track finding techniques)
● Tracks are known to be roughly straight lines (no B-field, high momentum tracks)

Example: ATLAS FTK & HTT track trigger projects (similar project in CMS)

➢ The different roads describe/contain bundles of similar 
trajectories 

➢ The roads provide an initial guess of the track parameters
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Linearisation of a Circle/Helix Fit
Given a list of p track parameters 
(e.g. R, Φ, dca, θ, z

0
):

and N hit displacements with respect to 
reference orbit:

Then the track is linearised using:

with coefficients A
ij
  (matrix of N x p coefficients)

Example for coefficients (weights):

slope beta

radius/curvature

hit positions:

position

value

position

value
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Linearisation of Fit Quality
For track finding (good/bad) or a track trigger the fit quality is crucial!

The calculation of the chi2 function can also be linearised using a principal 
component analysis:

The coefficients B
ij
 can be represented by a N x (N-p) matrix.

● Example: p=5 parameters, N=12 hits → 84 parameters
● not all coefficients are significant
● clever choice of parameters can reduce the complexity (→ extra slide)
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Example: ATLAS HTT
Pattern Recognition Mezzanine
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Example: ATLAS HTT

A
ij
 & B

ij

pattern match → ref. track

request constants

linearised χ2 calculation

apply χ2 cut

linearised parameter fit

highly parallel
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Question to students: 

What do you consider is most
challenging and technologically

ambitious in this design?
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Best Fitting Parameters?

z

r

z’

r’ 

1σ envelop

best fit

z
0

z’
0

● The fitted value and its 
uncertainty and also the
correlations depend on the
choice of the coordinate
system!

● a wrong coordinate system
choice can lead to large 
non-linearities 

● it is also possible to redefine
parameters which behave better
in the fit 

e.g. from [arXiv:1809.01467]
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Chapter 5 
A New Hit Uncertainty Track Fit
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Recap
Full track fit:

includes multiple scattering and hit uncertainties

(θ,Ф)
(σ

x
 , σ

y
)

B
field 

= 0

i i+1 i+2

● MS fit alone can be parallelised
● This parallelisation is based in hit triplets

● Hit uncertainty fit can be linearised 
                                   → good for parallisation 

● But linearisation needs a reference trajectory
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Question to students:

What is the next logical step?
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Hit Triplets
● A hit triplet is the smallest tracking element which contains all track parameter information
● The precision of the triplet track parameters depend on the lever arm (size)
● For track finding, triplets are often used as seeds (combinatorics is small): 

seed finding = triplet finding! 

Easy reconstruction in homogeneous magnetic field
➢ three points can always be connected by a circle
➢ all track parameters can be calculates → reference track

x
0

Radius of circle:

x
2

x
1

R
C
 = 1/c

d
01

d
12

d
02

(and permutations)
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Track Fit with N Hits
uncertainties are
not shownPossible configuration where all hits lie on their own reference trajectory

We can calculate how the track parameters change if we displace one point

x
j
 , β

j
 , R

j
 → x(δ

k
)

j
 , β(δ

k
)

j
 , R(δ

k
) 

j
 

δ
k

Now we can also calculate a weight or fit quality for small displacements

(j=1,…, N
triplet

)

δ
k

χ j
2
=∑k=0

2 δk
2

σ k
2

hit pull

Idea of common fit → combine all hit triplets with the constraint:     R
j
 = R
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Question to students:

Will such a fit work?



A. Schöning (Heidelberg PI) 64 Parallelisation of Fits

Correlations and triplet topologies

R
j
 = R

 

0 1 2disconnected
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Correlations and triplet topologies

R
j
 = R

 

R
j
 = R

 

0 1 2

0 1 2 3

disconnected

kinks
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Correlations and triplet topologies

R
j
 = R

 

R
j
 = R

 

0 1 2

0 1 2 3

R
j
 = R

 

0

1
2 3 4 5

6
7

correlations are automatically taken into account if consecutive triplets are considered

disconnected

kinks

no kinks
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Question to students:

How to make a constraint fit?
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Method of Lagrange Multipliers
Lagrange function

to be minimised constraint g(x)→0

Minimisation of this Lagrangian results in:

Lagrange function

with the partial derivatives: D := ∂
∂ x k

The minimisation results in a system of 
equations yielding the new fitted 
hit positions x*

The Lagrange parameters λ
k
 is the rate of 

change of the quantity being optimized as a
function of the constraint parameter (from 
Wikipedia)

In other words, λ
k
 described how well

the radius/curvature is measured!
Since the displacements x* are small, the 
system can be linearised and solved!
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hit pulls

here use c=1/R (curvature), 
which is numerically more stable

L.M.

reference trajectory to be fitted curvature

Linearisation:

with:

projection parameters

Lagrangian for Hit Uncertainty Fit

note c=1/R



A. Schöning (Heidelberg PI) 70 Parallelisation of Fits

Lagrangian for Hit Uncertainty Fit
Minimisation and yields:

with
fitted curvaturehits and Lagrange

multipliers

Note the symmetry of the matrix!

How to solve the system of equations?

(hits) (constraints)

N
hits

N
triplets
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Lagrangian for Hit Uncertainty Fit
Minimisation and yields:

with
fitted curvaturehits and Lagrange

multipliers

Note the symmetry of the matrix!

How to solve the system of equations?

(hits) (constraints)

N
hits

N
triplets
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Structure of Equations
system of equations with

matrix size is N
triplet

 x N
hit

N
triplet
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Solution
Ansatz for inverted matrix

with

Task is the inversion of the matrix: (rank N
triplet

)

P is a symmetric and 
sparse matrix. It can be 
inverted be the method of 
Cholesky Decomposition 

similar problem appears in the (related) broken line fit

usually a small matrix!
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Result
The fitted curvature is given by a weighted sum of the triplet curvatures: 

with

The hit positions are obtained from: The correlation between hits can be 
calculated as well:

→ the fit provides all information!



A. Schöning (Heidelberg PI) 75 Parallelisation of Fits

Cholesky Decomposition 

Note, this a sequential algorithm – not parallelisable!

Want to solve:

Matrix A is symmetric, so we can write:

with L being a left-sided matrix.

If L is known (→ next page) 
the matrix inversion is done by a recursive
A) forward and 
B) backward substitution:

A) B)

A x = b

A = L LT

A = LDLT(alternatively one can also use:                     

L y = b LT x = y
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Calculation of Matrix L

for (i = 0; i < dimensionSize; i++) {
    for (j = 0; j <= i; j++) {
        float sum = 0;
        for (k = 0; k < j; k++)
            sum += L[i][k] * L[j][k];
        if (i == j)
            L[i][j] = sqrt(A[i][i] - sum);
        else
            L[i][j] = (1.0 / L[j][j] * (A[i][j] - sum));
    }
}

Cholesky–Banachiewicz algorithm ● Note, that the algorithm needs to be 
executed in a predefined sequential order

● In general NxN steps are required, 
costs scale as N3 (sums)

● However, for a pentadiagonal matrix the 
algorithm scales as N2 

● (Other algorithms for a tri-diagonal matrix 
scale as N logN )

from Wikipedia
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Example: Calculation of L and y and x
Cholesky–Banachiewicz algorithm

For 3x3 matrix:

A= L=

Example:

(
1 y0 0 0
1 y0 1 y1 0
1 y0 4 y1 2 y2

) = (
b0

b1

b2
)L y = b

y = (
b0

b0−b1

1/2b2+3/2b1−2b0
)

LT x = y

LT=

(
1 x0 1 x1 1 x2

0 1 x1 4 x2

0 0 2 x2
) = (

y0

y1

y2
)

:

:

x = (
y0− y1+3 y2

y1−4 y2

y2
)

1

2

3
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Peformance of Choleski Decomposition
Sparse Cholesky Factorization on FPGA Using Parameterized Model
(Yichun Sun et al., https://doi.org/10.1155/2017/3021591)

different
big

matrices

CPU CPU-GPU FPGA (200MHz)

Conclusions
● FPGA implementation is about 2 times faster for large matrices
● The FPGA runs at O(10) times lower speed and consumes 50% of the power  

For hit finding with O(10) hits, the gain using FPGAs is probably small



A. Schöning (Heidelberg PI) 79 Parallelisation of Fits

Summary

● Linearisation and parallelisation are very powerful methods to accelerate 
computations

● A new parallelisable track fit with hit uncertainties is presented (for 2D)

➢ An extension to 3D is straight forward (not shown)

➢ An extension to include multiple scattering can also easily be done (not shown)
→ General Triplet Based Track Fit  (paper in preparation)

➢ Inverting the sparse matrix A (e.g. Cholesky decomposition) is not 
parallelisable; but FPGA and GPU could maybe used for acceleration

● The proposed track fit is based on hit-triplets which are ideal seeds for track
finding (→ graph theory) 
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Backup
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Comparison: Triplet Fit versus GBL

from V.Blobel (2006)

GBL Model: 
fit MS angles and hit positions with respect 
to a given reference track

● GBL is faster than Kalman fitter
● GBL requires reference trajectory as

input
➔ therefore not suitable for track finding

0
1 2 3 4 5 6

7

Triplet Model: 
fit MS angles and hit positions with respect 
to reference triplets

● Single triplets can be fitted including
MS and hit uncertainty algebraically
(not shown)

● triplets can be all fitted in parallel
including data preparation

➔ looks like an ideal algorithm for track 
finding? 

● But speed of algo not measured yet
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