

MODERN DEVELOPMENTS IN SCINTILLATORS

E. Auffray, *CERN, EP-CMX* HighRR Lecture Week 2021

Principle of scintillation

When energy of incident particle is converted in light by the material

Scintillator

Principle of scintillation

Light production

Light detection

Particle deposits energy in scintillator, scintillator produces photons in UV-visible range

 $N_{prod.Photon} = \eta_{conv} E_{\gamma}$

The produced photons are collected by photodetector Photodetector produces photelectron

 $N_{pe} = \eta_{coll}. QE. N_{prod.Photon}$

Choice of scintillator depends on the requirements of the application

- Density
- Light yield
- Decay time
- Radiation hardness (for some applications HEP, Astronomy)
- Feasibility to be manufactured, reproducibility
- Feasibility of large size, easy handling and "machinable
- Cost

Many Applications used scintillators

- Astronomy and dark matter searches
- High Energy Physics
- Medical Imaging
- X ray and gamma spectroscopy
- Monitoring in nuclear plants
- Neutron detection
- Oil well drilling

ORGANIC SCINTILLATORS

Organic scintillators

Aromatic hydrocarbon compounds with benzene ring The emission mechanism:

Transitions between energy levels of a single molecule

The π molecular orbital in benzene

- \Rightarrow can be observed independently of the physical state:
 - Pure organic crystals: eg. Anthracene, Stilbene,
 - Liquid organic solutions: dissolved in a solvent
 - Plastic scintillators: dissolved & polymerized

Electronic levels of organic molecule with $m{\pi}$ -electron system

Organic Crystal scintillator

One component material

Crystal	Chemical formula	Density	n	Decay time	emission (nm)
Anthracene	$C_{14}H_{10}$	1,25	1,62	30ns	447
Stilbene	C ₁₄ H ₁₂	1,16	1,62	4.5	390

- Usually fast (a few ns)
- different emission wavelengths
- used for pulse shape discrimination neutron/gamma
- Anthracene has a very good light yield: 2000ph/MeV

G. Hull et al, IEEE TNS Vol 56,N3,2009,899--903

Anthracene

https://www.inradoptics.com/products/scin tillation-crystals

stilbene

Emission of some organic crystal scintillators

Liquid/Plastic scintillators

Composed of 2-3 components: Base + fluors Primary ionization => excitation of molecules in the base polymer Foster energy transfer 2. De-excitation of the base polymer =>produces scintillation photons (~ 300 nm) absorbed by primary fluor, **Primary fluor** ~1%wt/wt) => Energy transfer directly to the fluor in a very short UV emission 340nm distance. Primary fluor emits at a longer wavelength (~ 340 nm) 3. secondary fluor absorbed by a secondary fluor $(\sim 0.05\% \text{ wt/wt})$ 4.

- Secondary fluor emits in the visible (~ 400 nm) 5.
- Detect by photodetector 6.

scintillator

Wavelength shifter

blue emission 400nm

Photodetector

Liquid/Plastic scintillators

Shift of the emission to higher wavelength

Liquid scintillators

										() · · · · · · · · · · · · · · · · · ·			
NE	Eljen	St. Gobain	Light Output % Anthracene*	Wavelength of Max Emission (nm)	Decay Constant (ns)	Attenuation Length(cm)	Refractive Index	H/C Ratio	Density	Loading Element % by weight or dist. feature	Softening or Flash Point (°C)	Uses	
	Liquid												
NE-213	EJ-301	BC-501 A	78	425	3.2		1.51	1.212	0.874	Pulse shape discrim.	26	$\gamma > 100 \text{ keV}$, fastn spectroscopy	
NE-224	EJ-305	BC-505	80	425	25		1.50	1.331	0.877	High light output	47	y, fast n, large volume	
	EJ-309		75	425	3.5		1.57	1.25	0.964	High flash point	144	pulse shape discrimination	
NE-226	EJ-313	BC-509	20	425	3.1		1.38	0.0035	1.61	F	10	γ, fast n	
	EJ-321H	BC-517H	52	425	2.0			1.89	0.86	Mineral oil-based	81	y, fast n, cosmic, charged particles	
		BC-517P	28	425	2.2			2.05	0.85	Mineral oil-based	115	y, fast n, cosmic, charged particles	
NE-235C	EJ-325	BC-519	60	425	4.0			1.73	0.875	Pulse shape discrim.	74	γ, fast n, n-γ discrimination	
NE-323	EJ-331	BC-521	60	425	4.0			1.31	0.89	Gd(to 1%)	44	Neutron spectroscopy, neutrino research	
NE-321A	EJ-339	BC-523A	65	425	3.7			1.67	0.93	Enriched ¹⁰ B	1	Total absorption neutron spectrometry	
	EJ-335	BC-525	56	425	3.8			1.57	0.88	Gd(to 1%)	64	Neutron spectrometry, neutrino research	
		BC-533	51	425	3.0			1.96	0.8	Low temp operation	65	y, fast n, cosmic	
NE-230		BC-537	61	425	2.8		1.50	.99 (D:C)	0.954	² H	-11	Fast n, pulse shape discrimination	
NE-314A		BC-551	40	425	2.2			1.31	0.902	Pb (5%w/w)	44	γ, X-rays < 200 keV	
		BC-553	34	425	3.8			1.47	0.951	Sn (10% w/w)	42	y, X-rays	

Table 8.1 Properties of Some Commercially Available Organic Scintillators

G. Knoll, Radiation detection and measurements, P226

=> Very fast 2- 4ns

See: St Gobain web page <u>https://www.crystals.saint-gobain.com/products/organic-scintillation-materials</u> Eljen web page <u>https://eljentechnology.com/products/plastic-scintillators</u>

Plastic scintillators

NE	Eljen	St. Gobain	Light Output % Anthracene*	Wavelength of Max Emission (nm)	Decay Constant (ns)	Attenuation Length (an)	Refractive Index	H/C Ratio	Density	Loading Element % by weight or dist. feature	Softening or Flash Point (°C)	Uses	
	Plastic												
NE-102A	EJ-212	BC-400	65	423	2.4	250	1.581	1.103	1.032	32 70 General purpose		General purpose	
NE-104	EJ-204	BC-404	68	408	1.8	160	1.58	1.107	1.032	1.8 ns time constant	70	Fast counting	
Pilot F	EJ-200	BC-408	64	425	21	380	1.58	1.104	1.032		70	TOF counters, large area	
NE-110	EJ-208	BC-412	60	434	3.3	400	1.58	1.104	1.032	Longest attn. length	70	General purpose, large area, long strips	
	2	BC-420	64	391	1.5	110	1.58	1.100	1.032	1.5 ns time constant	70	Ultrafast timing, sheet areas	
NE-111A	EJ-232	BC-422	55	370	1.4	8	1.58	1.102	1.032	1.4 ns time constant	70	Very fast timing, small sizes	
		BC-422Q	11	370	0.7	<8	1.58	1.102	1.032	Benzephenone, 1% 70		Ultrafast timing, ultrafast counting	
NE-103	EJ-260	BC-428	36	480	12.5	150	1.58	1.103	1.032	Greenemitter	70	Photodiodes and CCDs; phos wich detectors	
NE-108		BC-430	45	580	16.8	NA	1.58	1.108	1.032	Redemitter	70	Silicon photodiodes and red-enhanced PMTs	
		BC-436	52	425	2.2	NA	1.61	0.960D:C	1.130	Deuterium, 13.8%	90	Thin disks	
NE-115	EJ-240	BC-444	41	428	285	180	1.58	1.109	1.032		70	Phoswich detectors for dE/dx studies	
NE-142	EJ-256	BC-452	32	424	21	150	1.58	1.134	1.080	Lead, 5%	60	X-ray dosimetry (<100 keV)	
	1	BC-454	48	425	2.2	120	1.58	1.169	1.026	1.026 Boron, 5% 60 Ne		Neutron spectrometry, thermal neutrons	
NE-105	EJ-252	BC-470	46	423	2.4	200	1.58	1.098	1.037	Airequivalent	65	Dosimetry	
		BC-490	55	425	23		1.58	1.107	1.030	Casting resin	70	General purpose	
		BC-498	65	423	2.4		1.58	1.103	1.032	Applied like paint	70	β, γ detection	

Table 8.1 Properties of Some Commercially Available Organic Scintillators

G. Knoll, Radiationdetection and measurements, P226

=> Very fast 2- 4ns

See: St Gobain web page https://www.crystals.saint-gobain.com/products/organic-scintillation-materials

Eljen web page https://eljentechnology.com/products/plastic-scintillators

Plastic scintillators

Possibility to have various shapes

https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/ files/documents/organics-plastic-scintillators.pdf

Large size

Wavelength shifter used as light guide

Bar

ALL O

Fibers

INORGANIC SCINTILLATORS

LIQUID NOBLE GAS

Liquid noble gas scintillators

The fluorescence mechanism is an atomic process,

Fast emission < 10 ns but in VUV 130 < λ < 180 nm Ionisation: \approx 20eV/pair

- Hight light Yield
- Required cryogeny

used in experiments searching for dark matter

	LAr	L Xe
Atonimic number	18	54
Density (g/cm3)	1.4	2.95
Boiling Point (°/1 atm)	87.3	165
Radiation length Xo (cm)	14	2.4
Moliere radius (cm)	8	4.2
Interaction Length (cm)	84	57
Emission (nm)	128	174
Light yield (ph/MeV)	40000	42000
Decay time (ns) fast /slow	6.5/ 1590	2.2/ 27

https://courses.lumenlearning.com/introchem/chapter/the-noble-gases-group-18/ T. Doke et al., NIMA A291 (1990) 617-620

INORGANIC CRYSTAL SCINTILLATORS

120 years of inorganic scintillators

Scintillation process in inorganic crystals

The scintillation process chain

From eh pair creation to light emission

A. Vasiliev, SCINT99 conference,

Scintillation Yield

Fig. 5. Scintillation yield as function of the bandgap of compounds. The solid curve represents the maximum attainable scintillation yield assuming a β value of 2.5. Data points represent observed yields for fluoride, chloride, bromide, iodide, oxide, and sulfide compounds.

Emission spectra

Emission spectra

LuAG:Pr

Same host materials but different dopant => different emission wavelengths

Scintillation pulse spectra

$$S(t) = Io(1 - e^{-t/\tau_r})e^{-t/\tau_d}$$

Scintillation pulse spectra

Variation of decay constant with type of material

Main parameters influencing the time resolution of scintillating materials

$$I(t) = \frac{N_{pe\infty}}{\tau_d^2} (\tau_r + \tau_d) (1 - e^{-t/\tau_r}) e^{-t/\tau_d}$$

Number of photoelectrons detected

$$N(t) = \frac{N_{pe\infty}}{\tau_d} * \frac{t^2}{2\tau_r}$$

The coincidence time resolution CTR [FWHM]

$$CTR \alpha \sqrt{\frac{\boldsymbol{\tau_d \tau_r}}{N_{pe\infty}}}$$

Y. Shao, Phys. Med. Biol., vol. 52, pp. 1103 –1117, 2007.

CTR @511 keV for several scintillators

Typical crystal size 2x2x3mm³

Analytic CTR expression S. Vinogradov, NIMA 912 (2018) 149-153

S. Gundacker et al. Phys. Med. Biol. 65 (2020) 025001

Characteristics of some inorganic crystals

	Na(TI)	Csl	CsI(TI)	BGO	PWO	CeF₃	BaF ₂	LSO	LaBr₃ (Ce)	LuAP Pr/Ce	LuAG: Pr/Ce	GAGG:Ce
ℓ (g/cm³)	3.67	4.51	4.51	7.13	8.3	6.16	4.89	7.4	5.29	8.34	6.73	6.63
X _o (cm)	2.59	1.86	1.86	1.12	0.89	1.66	2.03	1.14	1.88	1.08	1.41	1.56
Rm (cm)	4.13	3.57	3.57	2.23	2	2.41	3.1	2.07	2.85		2.33	2.1
n	1.85	1.79	1.95	2.15	2.2	1.8	1.5	1.82	1.9	1.97	1.84	1.9
λ (nm)	415	310/420	550	480	420	310	195- 220/ 310	420	356	310/365	290,350/ 535	520
τ (ns)	230	6/35	10.5	300	10/30	5/30	0.8/ 630	40	20	20/18	20/70	50-90
LY (ph/MeV)	38000	2000	54000	8000	200	2000	1500/ 10000	33000	63000	15000/ 11400	>15000/ >25000	>35000

Classification of scintillators

- Density
- Light Yield
- Energy Resolution
- Decay Time

Important parameters for scintillators

- Transmission
- Radiation damage
- Light Yield, energy resolution
- Decay time

Optical Transmission

Ratio between the intensity of light entering (I_0) and exiting (I) the crystal $T = \frac{I}{-}$

- detect presence of defects and/or dopants in the crystal
- detect presence of diffusion centres
- control the transparency in the spectral region of luminescence emission
- control the uniformity of the optical properties along the crystal length

I_{T0}

The importance of radiation hardness

➔ Reduction of light collection on photodetector

➔ Degradation of energy resolution

With irradiation : creation of color centers which absorb light => Degradation of transparency

Light output:

Number of photons emitted by the scintillator and collected on the front face of the photocathode per unit of energy deposited by an incident particle, usually *photons/MeV*

$$LY(pe/MeV) = \frac{N_{A\max} - Ped}{Peak_{se} - Ped} \times \frac{1}{E_{inc}}$$

Energy resolution:

ratio between the full width at half maximum and the position of the photopeak

$$\left(\frac{\Delta E}{E}\right)_{FWHM} = \frac{FWHM}{N_{A_{\text{max}}}} \times 100$$

FWHM – Full Width at Half Maximum, N_{Amax} position of the peak maximum

Light output

LY varies with crystal types

Energy resolution

Non linearity of light output

Non proportionality varies with crystal

P. Dorenbos, SCINT2001 conference

Time coincidence resolution measurements

Data acquisition:

LeCroy Oscilloscope DDA 735Zi with 3.5GHz Bandwdith and 40Gs/s

High frequency readout

Time coincidence resolution set-up developped in lab 27 by S. Gundacker

S. Gundacker, PhD thesis S. Gundacker et al, JINST 8 P07014 2013 J. Gates et al, PMB Phys. Med. Biol. (2018) 63 185022 S. Gundacker et al., Phys. Med. Biol. (2019) 64 055012

Time coincidence resolution measurements

- Data acquisition:
- LeCroy Oscilloscope DDA 735Zi with 3.5GHz Bandwdith
- and 40Gs/s
- High frequency readout

S. Gundacker et al., Phys. Med. Biol. (2019) 64 055012

Production methods

Vertical Bridgman technique

Currently used methods based on the works of Bridgman (1925), Stober (1925) & Stockbarger (1936).

For high-melting materials, the melt contained in a crucible/ampoule is progressively frozen from one end by slow pulling down to the cold zone.

The melt is contained in a crucible made of Ir, Mo, Pt, Rh or Re, the crystal is grown at the free top surface of the melt; the rotating seed crystal is put into contact with the melt and pulled upwards at a given rate.

Example of crystal Ingots

YAG (Crytur)

PWO (BTCP)

Micro-Pulling down technology for crystal fibre growth

Courtesy Fibercryst

The melt is contained in a crucible with a capillary die at the centre bottom. the growth process starts after connection of the seed with a melt drop at capillary die. Then the seed is pulled down continuously to form the crystal fibre

E. Auffray, CERN EP-CMX, 27.09.2021

Micro-Pulling down technology for crystal fibre growth

Courtesy Fibercryst

Micro-pulling down (µPD) : multiple advantages

- Wide range of diameters 300 μm 3 mm
- Lengths up to 2 m
- Multiple geometries for capillary die
- Fast pulling rates
- Multi-fibres pulling possibilities (in parallel)

Edge-defined film-fed growth method (EFG)

EFG-grown plate & fiber of LuAG:Ce from Adamant Namiki Co , Japan

New production method: 3D printing

A way to design detector with unconventional shape

Printing is done layer-by-layer Voxel size is ~50 x 50 x 10-50 μm

YAG

YAGG Hole ∅<400 µm

PHOTODETECTORS

Photodetector

A photodetector converts light in electrical pulse 3 main steps:

- 1. Generation of a primary photoelectron or electron-hole (e-h) pair by an incident photon by the photoelectric or photoconductive effect,
- 2. Amplification of the p.e. signal to detectable levels by one or more multiplicative bombardment steps and/or an avalanche process (usually),
- 3. Collection of the secondary electrons to form the electrical signal

Photodetector main characteristics

- Quantum efficiency/photodetection efficiency (QE or PDE)
- Gain (G)
- Dark current or dark noise
- Energy resolution
- Dynamic range
- Time dependence of the response
- Rate capability

Various types of photodetectors

Main characteristics of photodetectors

Table 35.2: Representative characteristics of some photodetectors commonly used in particle physics. The time resolution of the devices listed here vary in the 10–2000 ps range.

Type	λ	EQEC	Gain	Risetime	Area	1-p.e noise	HV	Price
	(nm)			(ns)	(mm^2)	(Hz)	(V)	(USD)
PMT *	115 - 1700	0.15 - 0.25	$10^{3} - 10^{7}$	0.7 - 10	$10^2 - 10^5$	$10 - 10^4$	500 - 3000	100 - 5000
MCP*	100 - 650	0.01-0.10	$10^{3} - 10^{7}$	0.15-0.3	$10^2 - 10^4$	0.1 - 200	500-3500	10 - 6000
HPD^*	115 - 850	0.1-0.3	$10^{3} - 10^{4}$	7	$10^2 - 10^5$	$10 - 10^3$	$\sim 2 \times 10^4$	~ 600
GPM*	115 - 500	0.15 - 0.3	$10^{3} - 10^{6}$	O(0.1)	O(10)	$10 - 10^3$	300-2000	O(10)
APD	300 - 1700	~ 0.7	$10 - 10^8$	O(1)	$10 - 10^3$	$1 - 10^{3}$	400-1400	O(100)
PPD	320-900	0.15 - 0.3	$10^{5} - 10^{6}$	~ 1	1-10	$O(10^{6})$	30-60	O(100)
VLPC	500-600	~ 0.9	$\sim 5 \times 10^4$	~ 10	1	$O(10^4)$	~ 7	~1

*These devices often come in multi-anode configurations. In such cases, area, noise, and price are to be considered on a "per readout-channel" basis.

Photomultiplier principle

Fig. 1 from P. Kirzan, S. Korpar, Annu. Rev. Nucl. Part. Sci. 2013. 63:329–49

 Photo emission from photocathode
 ⇒ QE : 10% to 40%
 Depends photocathode
 + wavelength

2) Collection pe 1st dynode

3) Mutiplication through dynodes \Rightarrow Gain : $\delta_1 * \delta_2 * \delta_3 ... * \delta_N$ G: 10⁴ to 10⁶

Main disadvantages : Sensitivity to Magnetic field, High HV bias

Variety of photomultipliers

A large variety of PMT

https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf

QE depends on photocathode types

Fig. 2 From P. Kirzan, S. Korpar, Annu. Rev. Nucl. Part. Sci. 2013. 63:329–49

Variety of photomultipliers

A large variety of PMT

https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf

=> Choice of PMT depends on scintillator emission

Fig 34: From Photomultiplier tubes and assemblie for scintillation vaunting &HEP Hamamatsu https://www.hamamatsu.com/resources/pdf/etd/High_energy_PMT_TPMZ0003E.pdf

Silicon Photodetectors

Silicon photomultiplier (SiPM)

Array of single SPADs on a common Si substrate, all SPADs with quenching resistor are in parallel

N. Kratochwill et al. Phys. Med. Biol. 66 (2021) 195001

CERN

photon detection efficiency(PDE)

APPLICATIONS

Many Applications used scintillators

- Astronomy and dark matter searches
- High Energy Physics
- Medical Imaging
- X ray and gamma spectroscopy
- Monitoring in nuclear plants
- Neutrons detection
- Oil well drilling

Oil well logging

Detector concept Mud Formation

Gamma Ray

Fast Neutrons

Thermal Neutron

Epithermal Neutron

Collisions with

Nuclei of Atoms in Formation

Capture

Requirements:

- High density, High Z
- Good energy resolution
- Coverage of energy from few 0 to 3 MeV
- Non hydroscopic
 - Rugged
- Good high temperature performance 20 to 175°C
- Used crystals NaI(TI), BGO with some limitations => R&D for new scintillators: with higher density, faster, low temperature variation of LY: LuAP, YAP ...

See also M. Vasilyev, V. Khabashesku, Engineering of Scintillation Materials and Radiation Technologies. Ed M. Korjik & A Gektin springer 303-324

Security

Vehicule inspection

Personal Radiation detector

https://www.thermofisher.com/order/ catalog/product/4250671#/4250671

Requirements:

- High light Yield
- High energy resolution
- Coverage of energy from few 10keV to 5 MeV
- Scintillating crystal/plastic scintillator depending size of the detector
- Usually used Na(Tl) or PVT(polyvinyltoluene)
- R&D on many other scintillators
 ongoing

V. Linev et al., Engineering of Scintillation Materials and Radiation Technologies. Ed M. Korjik & A Gektin springer 325-339

Gammay ray Space Telescope

Fermi Gamma Ray Space Telescope (FGST)-: Large area telescope (LAT)

Aim: measure directions, energies & arrival time of γ rays with energy 20MeV to 300GeV:

•Tracking:

silicon microstrip detector with tungsten sheets converted layer

• Crystal calorimeter:

CsI Scintillator with photodiode readout (16*96 crystals of 2.7*2*32.6cm³) readout with photodiode

Handbook of particle detection and Imaging, C Gruppen, I Buvat, springer 2018

Search for dark matter

Weakly Interacting Massive Particles (WIMPs)

Cryogenic Rare Event Search with Superconducting (CRESST) experiment:

Direct detection - elastic scattering of nuclei

- 1. Low energy recoil: 20 keV
- 2. Expected event rate $\approx 1/kg$ year
- \Rightarrow Background rejection using simultaneous
 - observation of the light signal and heat signal.

=> Temperature 15mK

M. Mancuso et al. Journal of Low Temperature Physics (2020) 199:547–555 https://doi.org/10.1007/s10909-020-02343-3

CRESST Detector

The CRESST Detector Modules are arranged in a support structure which can hold up to 33 crystals, corresponding to 10kg of detector material.

Search for dark matter

Weakly Interacting Massive Particles (WIMPs)

Requirements

- high light yield at low temperatures
- large atomic number A
- large light yield
- Radiopurity (ex Lu, Rb, K, U, Th)
- Suitable thermodynamics characteristics

CaWO₄ (τ =300µs; LY≈28'000ph/MeV) is used (\emptyset 4*4cm) => large on-going effort to improve the purity of material

Possible other candidates

under study ZnWO₄, CaMoO₄, CdMoO₄, CdWO₄

https://www.cresst.de/pictures.php

Search for dark matter

Xenon experiment: 3200T of liquid Xenon registered both scintillation and charge signal => Energy and position of interacting particle

Pictures from http://www.xenon1t.org

Search for neutrinoless double beta decay

Enriched Xenon Observatory (EXO-200), nEXO experiment

Simultaneous readout of charge and scintillation in a large and homogeneous Liquid Xe TPC

The EXO-200 experiment: 200kg of Xe liquid put a limit on the half- life of the process of > 1.1×10^{25} years, Bigger detector nEXO on development:

- \Rightarrow 5 tonnes cryogenic, liquid xenon, enriched to 80% in the isotope ¹³⁶Xe
- ⇒ development of high speed VUV photodetector to detect 175nm UV emission of Xe

https://fiveyearplan.triumf.ca/teams-tools/nexo-next-enriched-xenon-observatory/

Calorimetry

Aim: Measure the total energy of high energy particle with best energy resolution for both electromagnetic (e^{\pm} , γ) and hadronic particles (π^{\pm} , p^{\pm} , K^{\pm} , n ...)

- Two types
 - Homogeneous: 1 material both absorber and active material
 - Sampling: 2 materials : absorber and active material
- => Homogenous better energy resolution

Characterized by:

Radiation length X_o (g/cm²): After 1 X_o: energy left is 1/e incident energy

$$X_0 = \frac{716.4A}{Z(1+Z) \ln\left(\frac{287}{\sqrt{Z}}\right)}$$

• Molière radius $R_m(g/cm^2)$: Transverse size of shower: 95% in average of the shower's energy deposition is contained $R_m = 0.035 * X_o * (Z+1.4)$

=> High Z material is preferable

Electromagnetic shower

a: statistical term: depends mainly on light yield => low for reasonable light Yieldb: noise term negligible

C: Constant term: depends on light uniformity, calibration

Light collection Uniformity

To restore uniformity, one method is to depolish one lateral face with a well defined roughness (Ra)

Crystal ball calorimeter

Crystal Ball @SLAC, 1979 for Charmonium spectroscopy

- 50cm diameter spherical ball of NaI(TI) crystals
- 672 crystals 42cm long, PMT readout
- Very good resolution allowed precise spectroscopic study of charmonium states

Charmonium decay

Babar detector at SLAC (PEP-2)

Detailed study of b-quarks, b-quark containing hadrons, and CP violation

- Cylindrical geometry
- 6580 CsI:Tl crystals, ≈34 cm long,
- Excellent energy, position resolution to reconstruct π 0s.

L3 electromagnetic calorimeter

- Cylindrical geometry
- 10752 BGO crystals (7680 in barrel & 2*1536 in endcaps: (2x2)*(3*3)* 24cm
- Excellent energy, position resolution from 100 MeV to 10 GeV

@CERN in LHC

2 experiments use scintillating crystals : Lead tungstate crystals : PbWO4

ALICE :17920 crystals

75848 crystals = 100 tons

To build such detector a big challenge 20 years of work

E. Auffray, CERN EP-CMX, 27.09.2021

From R&D to Production

700

Wavelength (nm)

105 Front irradiation 0.15Gy/h preproduction crystals 100 -y after/Ly init (%) PWO4510 (%) Y 1 PWO4579 (%LY PWO4585 (%LY) 95 Specification: -6% PWO4590 (%LY PWO4623 (%LY) PWO4533 (%LY PWO4481 (%LY) PWO4473 (%LY) 90 0.5 Ω Dose (Gy) 1.5 2.5 PWO_08

Delivery of the first 100 PWO Crystals Sept 98

Crystal quality control

Capacity of 60 crystals/day on each machine

E. Auffray et al, NIMA 456 3 (2001) 325, E. Auffray et al, NIMA 523 3 (2004) 355 S. Baccaro et al., NIMAA459 (2001) 278

has been performed on each crystal installed in ECAL (75848!!) All data stored in database

CMS ECAL assembly: 1998-2007

61200 crystals

Submodule assembly

Thermal screen installation

144 modules

Monitoring system installation

E. Auffray, CERN EP-CMX, 27.09.2021

ECAL in CMS at P5 Cessy, France

CMS ECAL: Higgs boson discovery

François Englert et Peter Higgs, Physic Nobel Price in 2013

Positron emission tomograph (PET) Principle

A positron emitting radiopharmaceutical is injected into the patient:

Fluorodeoxyglucose (18F-FDG)

The patient is placed in the imaging scanner

annihilation Annihilation of the emitted positrons with electrons in the tissue producing back-to- back photons detected by scintillating crystals

unstable

radiotracer

PET scanner in action

Advantage of PET?

TABLE I. – A list of the most common Imaging techniques with their main performance related to molecular imaging.

$\begin{array}{c} {\rm Imaging} \\ {\rm technique} \end{array}$	Source of signal	Spatial resolution	Sensitivity (mol/l)	$\begin{array}{c} \text{Quantitative/Morphological} \\ \text{information} \end{array}$
PET	γ -rays (511 keV)	$1-4\mathrm{mm}$	$10^{-11} - 10^{-12}$	+++/+
SPECT	γ -rays (< 300 keV)	0.3 – $10\mathrm{mm}$	$10^{-10} - 10^{-11}$	++/+
Optical bioluminescence	Visible light	$3-5\mathrm{mm}$	$10^{-15} - 10^{-17}$ (theoretical)	+(++)/n.a.
Optical fluorescence	Visible light and NIR	$23\mathrm{mm}$	$10^{-9} - 10^{-12}$ (probable)	+(++)/n.a.
MRI	Radio waves	$25100\mu\text{m}$	$10^{-3} - 10^{-5}$	++/+++
CT	$\begin{array}{c} \text{X-rays} \\ (40120\text{keV}) \end{array}$	$10200\mu\text{m}$	n.a	n.a./+++

from A. Del Guerra et al., 2016 Positron Emission Tomography: Its 65 years Riv. Nuovo Cimento 39 155

PET medical fields

- Oncology
- Neurology
- Cardiology
- Drug development
- More...

Oncology

Fig5 from M. E. Phelps, PNAS, 97 (6) 2000, 9226-9233

Similar technics in calorimeter detectors for HEP and PET devices

Electromagnetic Calorimeter of CMS experiment

PET scanner

Crystals + photodetectors + electronic

At LHC Energy of particles < TeV For PET 0.000000511 TeV* (511keV)Photons

RECENT DEVELOPMENT IN SCINTILLATOR FIELD

New production methods

Micropulling down technique

Czochralski method Fibres cut from large ingot

⇒ Feasibility study of crystal fibres production: in the ANR project INFHINI and Intelum project (European Rise grant 644260) with 16 Partners (many from CCC) from 12 different countries: 11 academia and 5 companies 3D printing

Courtesy of G. Dossovitky, Kurchatov Institute

Development of crystal fibres allows for flexibility in the calorimeter design

From bulk crystal

To bloc of fibres

To SPACAL

Homogeneous calorimeter

=> Requires large volume of fibres with high density Sampling calorimeter

⇒ requires less fibres, possibility to use materials with lower density

Could be multifunctional: mixed type of fibres Cerenkov + scintillation +neutrons sensitive Could play on sampling fraction X_{0} and Moliere radius [mm]

25

20

10

8.0

Moliere radius

0.2

Flexibility of SPACAL geometry

Can select the sampling fraction

Studied for a pitch fixed at 1.67 mm with variable fibre sizes

.

1.0

R. Cala et al. preliminary result

0.8

 $V_{GAGG}/(V_{GAGG}+V_W)$

0.6

0.4

GAGG fibers/W absorber

Motivation for the Upgrade II of the LHCb ECAL

Current LHCb ECAL:

> Optimised for π^0 and γ reconstruction in the few GeV to 100 GeV region at 2 x 10^{32} cm⁻²s⁻¹

- ▶ Radiation hard up to 40 kGy
- Shashlik technology: 4x4 / 6x6 / 12x12 cm² cell size
- ≻ Energy resolution: $\sigma(E) / E \approx 10\% / VE \oplus 1\%$
- Large array (8 x 7 m²) with 3312 modules and 6016 channels

Requirements for the Upgrade II: operation at $L = 1-2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

- > Sustain radiation doses up to 1 MGy and $\leq 6.10^{15}$ cm⁻² for 1MeV neq/cm² at 300 fb⁻¹
- Keep at least current energy resolution
- Pile-up mitigation crucial
 - ✓ Timing capabilities with O(10) ps precision, preferably directly in the calorimeter modules
 - \checkmark Increased granularity in the central region with denser absorber
- Respect outer dimensions of the current modules: 12x12 cm²

9-cells of 1.5x1.5cm² GAGG & YAG fibres in W-absorber

SPACAL W/GAGG prototype test at DESY2020/2021

\Rightarrow Possible solution SPACAL for central part : W/Garnet (GAGG) or W/plastic fibres

SPACAL-W/GAGG: energy resolution

Energy resolution measured at DESY in 2020 for electrons up to 5.8 GeV

SPACAL W/GAGG prototype test at DESY2020/2021 9-cells of 1.5x1.5cm² GAGG & YAG fibres

2 sections with double side readout (7+18 Xo) Hamamatsu R12421 and PMMA light guides readout

Measurements performed at several vertical and horizontal incidence angles Energy resolution improving for increasing angles Preliminary fit results to low energy data at $3^{\circ}+3^{\circ}$ give sampling term of 10.6% and constant term of 1.9% \pm 0.5%

SPACAL-W: time resolution

with electrons up to 5GeV at an incidence angle of 3° vertically and 3° horizontally

W/GAGG

Time resolution <20ps @ 5 GeV for R7600U-20 and direct coupling

Why FAST timing is important in HEP?

Search for rare events implies high luminosity accelerators

- \rightarrow Rate problems;
- → Pileup of >140 collision events per bunch crossing at *High Luminosity-LHC;*
- \rightarrow Pileup mitigation via TOF requires TOF resolution < 50ps.

The advantage of timing information

The information of timing will allow to identify the vertex

Exemple of CMS experiment at HL-LHC

Between tracker and ECAL Introduction of timing layer With mip sensitivity with time resolution of 30-50ps

CMS Barel timing layer (BTL)

2 trays in z

BTL detector 22 trays: 2(2) x 36(th) 32k channels short fibres (3*3*57mmm³) BTL Module: Ly6 crystal (2 channels) BTL Module: Ly6 crystal (2 channels) Crystal bar SIMS

LYSO crystals with dual-end SiPM readout Basic unit: 16x1 array of crystals ($\sim 3 \times 3 \times 57 \text{ mm}^3$) Coverage: lnl<1.45, surface $\sim 38 \text{ m2}$; 332k channels Nominal fluence: **1.9x10¹⁴ neq/cm²** (3000 fb-1)

Target 30ps time resolution in barrel

State of the art time resolution with mips

A. Benaglia, et al., NIM A (2016), 830, 30-35

E. Auffray, CERN EP-CMX, 27.09.2021

0.25

0.2

CMS Barel timing layer (BTL)

Merits of Time of Flight PET (TOF-PET)

→Improve event localization along the line of response (LOR)

https://the10ps-challenge.org

$$\Delta x = c \frac{\Delta t}{2}$$

→Improve signal to noise ratio (SNR)

$$SNR_{TOF} \sim \sqrt{\frac{D}{\Delta x}} \cdot SNR_{CONV}$$

Current status commercial TOF-PET

TOF PET SIEMENS: BIOGRAPH VISION

3.2mm section crystals CTR 215ps

Webpage SIEMENS:

https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@molecular/documents/download/mda4/mzmy/~edisp/biograph_vision_technical_flyer-05440720.pdf

State of the art time resolution with with PET size crystal at 511keV

FBK NUV-HD 4x4mm², 40x40µm² SPAD + LSO:Ce:Ca

=> Limit of "standard" crystals around 100ps

S. Gundacker et al., Phys. Med. Biol. (2019) 64 055012

E. Auffray, CERN EP-CMX, 27.09.2021

New TOF-PET frontier :10ps

10ps: Spatial localization directly from TOF (1.5 mm)

- Particule Interaction
- Light generation
- Light transport
- Light transfer
- Light collection

+ t_{transit} **Transit time**

Photodetector

Reduce SPTR and DCR

jitter

- Increase fill factor (PDE)
- **Digital SiPM**
- MCP for PET & HEP

- + t_{SPTR} + t_{TDC} Single photon TDC conversion time time spread **Electronics** TDC < 10ps bins Monolithic architecture High bandwidth Low noise \triangleright Massive parallel data \geq
 - High number of channels \geq

crystal length influence on time resolution

Propagation time @ different emission angles for emission position averaged over crystal length

$$-50.8^{\circ} \le \theta \le 50.8^{\circ} : t_{prop} = \frac{n}{c} L_{p} = \frac{n}{c} * \frac{x}{\cos(\theta)}$$

$$129.2^{\circ} \le \theta \le 146.7^{\circ} \text{ or } -129.2^{\circ} \le \theta \le -146.7^{\circ}$$

$$t_{prop} = \frac{n}{c} L_{p} = \frac{n}{c} * \frac{(2L - x)}{\cos(\theta)}$$

50.8° critical angle for crystal (LSO) -grease interface

Impact of light propagation on the coincidence time resolution increases with length;
Maximum contribution averaged over length

For L= 5mm : Δt=56.8ps
For L=10mm : Δt=113.6ps
For L=20mm : Δt=227.2ps

Crystal length influence on time resolution

Measured with NUV-HD (25μm SPAD size, 4x4mm² device size, 2x2mm² crystal cross section T=15°C

S. Gundacker et al. JINST 2016 JINST 11 P08008

Influence of depth of interaction (DOI)

 \Rightarrow Unknown DOI introduced degradation of the CTR \Rightarrow Knowledge of DOI and correction of DOI improve the CTR

Improvement of light collection

Inorganic scintillating crystals usually have high index of refraction

Up to 50% of the light may not exit the crystal

S. Gundacker et al 2016 JINST 11 P08008

Air, Glue

Photonic crystals

Structuration of exit surface with nanopaterning

E. Auffray, CERN EP-CMX, 27.09.2021

Improvement of CTR with photonic crystals

CTR Measured on 1cm³ of LSO without & with paterning

R. Pots et al, NIM A, 240 (2019) 254-261

Improve photodetector parameters

CTR variation with Single photon time resolution (SPTR)

Not only the crystal properties but also the photodetector properties are important:

SiPM SPTR investigation

HPK S13360, 3x3mm², 50μm HPK S14160, 3x3mm², 50μm SensL FJ, 3x3mm², 35μm Broadcom, 4x4mm², 30μm Ketek WBA0, 3x3mm², 50μm FBK NUV-HD, 4x4mm², 40μm

Large variation among various types of SIPMs

CTR measured with2x2x3mm³ LSO:Ce codoped 0.4%Ca corrected for measured PDE as if 59%

intrinsic SPTR FWHM [ps]

How to improve scintillation properties ?

Several emission process

- Excitonic emission (STE, excitations of anion complexes)
- Emission of activators (Ce, Pr, ...)
- Crossluminescence
- Hot intraband luminescence (HIL)

Slow

fast

Modification of properties of « standard » scintillator

- Excitonic emission (STE, excitations of anion complexes)
- Emission of activators (Ce, Pr, ...)
- Cherenkov radiation
- Crossluminescence
- Hot intraband luminescence (HIL)
- Quantum confinement driven luminescence

Example in garnet crystals

LuAG:Ce: decay time

Time resolution @ 511 KeV versus photon density of various GAGG samples from various producers

=> Properties can be tuned

M. Lucchini et al, NIM A Volume 816 (2016), pp 176–183, L. Martinazzoli et al., NIM A, Volume <u>1000</u>, (2021), 165231

S. Gundacker et al, NIMA A 891 (2018) 42–52 E. Auffray, CERN EP-CMX, 27.09.2021

Hot intra-band luminescence

- Ultrafast emission $\leq 10^{-12}$ s
 - e-IBL: spectrum in visible range
 - H-IBL: NIR spectrum
- Independent of temperature
- Independent of defects
- Absolute Quantum Yield
 - $W_{hv}/W_{phonon} = 10^{-8}/(10^{-11}-10^{-12})$
 - $\approx 10^{-3}$ to 10^{-4} ph/eh pair

Hot intra-band luminescence

Observed in several crystals but very low light yield: 30ph/MeV in Csl

Measured with pulsed cathodoluminescence (PCL) in Tartu electron beam with Emax~120 keV, pulseFWHM 200 ps, peak electron current ~15 A/cm2

Crossluminescence

Radiative transition between the core- and valence bands.

Crossluminescence

Many Materials available

Compilation of CL data at 293 K

C.W.E. Van Eijk Journal of Luminescence60&OI 1994! 9~694!

$ \mathbf{E}_{g} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BaFa
K_2YF_5 5.5 8.5 170 300 1.3 3.1 [8,9] $KLuF_4$ 5.5 8.5 170-200 ~ 200 1.3 5.2 [8,9,16]	
KLuF ₄ 5.5-8.5 170-200 ~ 200 1.3 5.2 [8.9,16]	
KLu ₂ F ₇ $5.5-8.5$ 165 ~ 200 < 2 7.5 $[8]$ K_2SiF_6 $5-9$ $140-250$ [21]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
LiBaF3190,23014000.8 5.2 [10]BaMgF4190,2201000 4.5 [21]	
$Ba Y_2 F_8$ 4-7.50.95.0[20] $K_2 Li Ga F_6$ 5-9140-250[21] $K_2 Na Al F_6$ 5-9140-250[21]	

Very fast emission < 2ns but emission < 400nm

Crossluminescence in BaF₂

Sub ns emission but in UV &additional slow component

R. Pots et al., Front. Phys. 8:592875. doi:10.3389/fphy.2020.592875 S Gundacker et al 2021 Phys. Med. Biol. 66 114002

Reduce the slow component in BaF₂

Decay time spectra for various % Y doping

 \Rightarrow No change in short decay

J. Chen, et al., IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 2147-2151, 2018. S. Gundacker et al., Phys. Med. Biol. 66 (2021) 114002 \Rightarrow but slow component suppression

Improvement of UV photodetection

Development on going on VUV SiPMs (eg: for nEXO experiment (Xe liquid @175nm)*) both in Hamatmasu: HPK S13370-CN & FBK NUV HD to increase PDE (>20%)

Further improvement of PDE in UV and optical coupling may improve time resolution

R. Pots et al, Front. Phys. | doi: 10.3389/fphy.2020.592875 S. Gundacker et al., Phys. Med. Biol. 66 (2021) 114002

* A. Jamil et al., in IEEE TNS, vol. 65, no. 11, pp. 2823-2833, 2018, doi: 10.1109/TNS.2018.2875668.

Prospective for BaF₂

S. Gundacker et al., Phys. Med. Biol. 66 (2021) 114002

E. Auffray, CERN EP-CMX, 27.09.2021

CRYSTAL

Development of cross luminescence material more in UV visible region

Emission spectra

Decay spectra

Courtesy V. Vanecek, M. Nikl, FZU Prague

Emission @ 260nm 2 fast decay times: 0.42ns, 2.42ns

How to go further towards 10ps? => Exploit faster light processes

Better time resolution with prompt photons

E. Auffray, CERN EP-CMX, 27.09.2021

Cherenkov emission

Cherenkov radiation is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium (shoke wave).

 \Rightarrow Emission is quasi instantaneously (< 10 ps) but few photons are emitted

$$\frac{dN}{dx} = 2\pi\alpha \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) \left(1 - \frac{1}{\beta^2 n^2}\right)$$

=> Emission in all wavelength ranges : $1/\lambda^2$ but more in UV => Emission higher with increasing refractive index

Exploitation of Cerenkov to improve time resolution of BGO

CTR histogram: 2x2x20 mm³ BGO crystals, fully polished, coupled to FBK NUV-HD

but only few photons: 17 photons in the 310-850nm range.

440-665 keV energy window -> CTR = 288 ps FWHM without time walk correction 440-665 keV energy window -> CTR = 259 ps FWHM with time walk correction

CTR: 259ps

S. Gundacker et al. (2019) Phys. Med. Biol. 64 055012 N. Kratochwil et al (2020), Phys. Med. Biol. 65 115004 N Kratochwil et al (2020) IEEE TRPMS 2020.3030483

Exploitation of Cerenkov to improve time resolution of BGO

200

fast rise time, left Channel

234 ps

For fastest events CTR of 200ps !

200 ps

left Channel : slow,

right Channel: fast

miknedan

← fast rise time, right Channel

Variation of rise time Classification of events with rise time with amount of Cerenkov events 8000 7000 **BGO** signal Fastest **BGO** signal 250 left Channel : fast. 20% of Slowest 20% of 6000 right Channel: slow with Cherenkoy pure scintillation Photopeak Photopeak events 200 FWHM = 252 psof left Channel events of 5000 measured rise time with Cherenko FWTM = 809 ps 150 4000 - Channel SiPM signal [mV] 50 mV measured rise time pure BGO scintillation 3000 100 2000 1000 time delay 0.1 0.2 0.3 0.4 0.5 0.6 Bise time [ns] single SPAD signal 10 mV 2x2x20 mm³. FWHM time [ps] 333 ps [sd] 340 320 (WHM 300 280 260 297 ps slow-slow One pixel of matrix: 4% of all events 267 ps 250 ps CTR 240 252 ps 220

Impact on image reconstruction quality of the exploitation of Cerenkov in BGO

N. Efthimiou et al., IEEE TRPMS.2020.3048642

From bulk to nanomaterial: Quantum confinement

Same crystal lattice but nanometer-sized crystal particle

V. Klimov Annu Rev. Phys. Chem. 58 (2007) 535-573

Figure 4. Variation of quantum dot energy bandgap vs. dot size for some common semiconductors. From [9].

With decreasing crystal size From "continous band" to quantized energy levels

K. Jasim, Quantum Dots Solar Cells http://dx.doi.org/10.5772/59159

Quantum confinement

Simultaneous excitation at 365 nm

from Benoit Dubertret and Hideki Ooba

=> Tune the emission properties by changing size of nanodots

Exciton energy increases with decrease of nanostructure size – control of emission wavelength

Example of CdSe

S. Bouet, et al., Chem Mater 25(2013), 1262 (fig.1)

CdSe quantum well/quantum dot

J.Q. Grim et al., Nature Nanotechnol. 9 (2014) 891.

Christodoulou et al., J. Mater. Chem. 2014, 2, 3439.

R. Martinez Turtos et al., 2016 JINST_11 (10) P10015

=> Much Faster than LYSO crystal

E. Auffray, CERN EP-CMX, 27.09.2021

CdxZn1-xS/ZnS (CZS) QD Nanocomposite Synthesis

C. Liu et al. ACS Nano, 2017

ZnO:Ga Nanocomposite: photoluminescence properties

In SiO₂

ASCIMAT

Buresova et al, Opt. Express 24, 15289 (2016)

Perovskite thin film

CsPbBr_3 thin films deposited on glass substrate

CsPbBr₃ nanocrystals

Perovskite nanocomposite

CsPbBr₃ nanocrystals

CsPbBr₃ nanocrystals imbedded in polystyrene

Nano-sized CsPbBr₃ embedded in polymer matrix

Courtesy V. Cuba, CTU, Prague

InGaN/GaN heterostructure: Multiple Quantum Wells (MQW)

Electrons and holes are concentrated in narrow gap layers and radiatively recombine there being spatially confined by small thickness (few nm) of the layer.

MOVPE technology can prepare such nanostructures on 4-6 inch size Al₂O₃ substrates

T. Hubacek, CrystEngComm, 2019, 21, 356

crytur

InGaN/GaN heterostructure: Multiple Quantum Wells (MQW)

InGaN/GaN heterostructure: Multiple Quantum Wells (MQW)

T. Hubacek, CrystEngComm, 2019, 21, 356

CRYSTAL

CI FAR

Heterostructure concept

Combine scintillators with high light yield, high stopping power with prompt emission

- The 511keV photon is mainly stopped by the heavy material
- In some cases, the recoil photoelectron deposits its energy both in the heavy and in the fast material
- \Rightarrow Shared 511keV events have a better timing

First attempt of Heterostructure

multiply x5 3x3x3mm³ LYSO:Ce or BGO 3x3x0.2mm³ CdSe/CdS core crown nanoplatelets (CC NPLs) drop-casted film Effective deposited mass equivalent to 20μ m

R. M. Turtos et al, Phys. Med. Biol. 64 (2019) 85018 R.M. Turtos, et al. npj 2D Materials and Applications vol. 3, article number: 37 (2019)

Heterostructure concept

Proof of concept with combining LSO or BGO with plastic scintillator on 3x3x3mm³ pixels

R. M. Turtos et al, Phys. Med. Biol. 64 (2019) 85018

The 10 ps challenge: a step toward reconstruction-less TOF-PET challenge: https://the10ps-challenge.org

The 10 ps challenge:

- a spur on the development of fast timing
- an opportunity to get together
- an incentive to raise funding
- a way to shed light on nuclear instrumentation for medical imaging and beyond
- One unique challenge launched for 5 to 10 years and operated by an international organisation with rules issued by the community based on the measurement of CTR combined to sensitivity **Several milestones and prizes:**
- 3 years after the launch of the challenge:
- the Flash Gordon prizes delivered to the 3 best certified achievements
- until the end of the challenge:

the Leonard McCoy prize for the first team meeting successfully the specifications of the challenge

Non-TOF

Non-TOF OSEM

10 ps TOF backproj

E. Auffray, CERN EP-CMX, 27.09.2021

Conclusion

https://doi.org/10.1016/i.omx.2019.100021

Conclusion

https://doi.org/10.1016/i.omx.2019.100021

Some references

J. B. Birks, The theory and practice of scintillation counting, 1964, Pergamon Press

D. Curie, Luminescence in Crystals (Methuen, London, 1963)

C. Gruppen, I. Buvat, Handbook of particle Detection and Imaging, 2012, 2018, Springer ISBN 978-3-642-13270-420

H.Kolonaski, N. Wernes, Particle Detectors fundamentals and applications, 2020, Oxford university ISBN978-0-19-885836-2

G. Knoll, Radiation Detection and Measurement, 2000, Willey

P. Lecoq et al, Inorganic Scintillators for Detector Systems Physical Principles, Springer, 2006/2017, ISBN 978-3-319-45521-1

W. R. Leo, Technique for Nuclear and particle Physics experiments, Springer-Verlag 1987, 1994, ISBN 0-387-57280-5

S. Tavernier, Experimental Techniques in Nuclear and Particle Physics, ED. Springer, 2010, ISBN 978-3-642-00828

P. Rodnyi, Physical Processes in Inorganic Scintillators, 1997, New York CRC Press

R. Wigmans, Calorimetry Energy Measurements in Particle Physics, Oxford university press ISBN 0-19-850296-6

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

https://pdg.lbl.gov/2020/download/Prog.Theor.Exp.Phys.2020.083C01.pdf

Conferences:

Scintillators: SCINT conferences: Conference on scintillators and their applications every 2 years: <u>http://scint.univ-lyon1.fr/</u> Photodetectors: NDIP conferences: Conference on new developments in photodetection every 3 years: <u>https://www.ndip.fr</u>

Reference papers:

SCINT conference series proceedings:

C. Dujardin *et al.*, *IEEE Transactions on Nuclear Science*, vol. 65, no. 8, pp. 1977-1997, Aug. 2018, doi: 10.1109/TNS.2018.2840160.

P. Lecoq et al 2020 Phys. Med. Biol. 65 21RM01

P. Kirzan, S. Korpar, Annu. Rev. Nucl. Part. Sci. 2013. 63:329–49

F. Acerbi, S. Gundacker, NIM A 926 (2019) 16-35

S. Gundacker, A. Heering, PMB 2020 Aug 21;65(17):17TR01. doi: 10.1088/1361-6560/ab7b2d.

E. Auffray, CERN EP-CMX, 27.09.2021

Acknowledgment

The CERN Crystal clear team at CERN EP-CMX group, and all the Crystal clear members Supported projects: European Union's Horizon 2020 research and innovation programme under ERC TICAL (grant agreement 338953), the Marie Skłodowska-Curie Intelum project (grant agreement 644260), TWIN project ASCIMAT (Grant agreement no. 690599), COST Action TD1401 (FAST),

