

Charming Higgs bosons Direct constraint on the Higgs-charm coupling with the ATLAS detector

University of Zurich, 11.10.2021 Marko Stamenkovic

Fundamental constants of nature

Standard Model and General Relativity = dynamical theories → Rely on free parameters measured experimentally!

M. Stamenkovic, Seminar@UZH, 11.05.21

Image credit: PBS space time

Fundamental constants of natureImage credit: PBS space timeRandom values?Underlying theory?

Increasingly clear that these free parameters have a good value

- Are the values randomly chosen?
- Is there an underlying unified theory to explain them?
 → Need to measure each parameters in many ways!

M. Stamenkovic, Seminar@UZH, 11.05.21

Fundamental constants of nature

Most of the free parameters related to Higgs mechanism → Studied in details experimentally

M. Stamenkovic, Seminar@UZH, 11.05.21

Depends on

Higgs mechanism

Image credit: PBS space time

3 generations of fermions only distinguishable through their mass • Theory: Higgs boson coupling proportional to mass of fermions

Do all particles get their mass from Higgs mechanism?

Stamenkovic, Seminar@UZH, 11.10.21

Fermions mass pattern

5

Fermions mass pattern

Experimental observations of Higgs boson coupling to 3rd generation Evidences of Higgs coupling to muons → Compatible with the SM predictions

Currently no experimental proof that Higgs boson couples to other particles

Stamenkovic, Seminar@UZH, 11.10.21

quarks leptons force 1 Higgs field

Image credit: S. Oggiro

6

Fermions mass pattern

Higgs decay to charm quarks: $H \rightarrow cc$

Probes Higgs coupling to 2nd generations of quarks

∰C.

- Next heaviest fermion: $BR(H \rightarrow cc) \approx 3\%$
- Challenge: identification of c-quarks in the detector!
- Enhanced coupling to c-quarks \rightarrow sign of new physics

M. Stamenkovic, Seminar@UZH, 11.10.21

H→cc

M. Stamenkovic, Seminar@UZH, 11.10.21

How to measure $H \rightarrow cc$

Positron e⁺

Production mode: Higgs associated with Z or W boson decay to leptons Trade-off: smaller production cross-section but cleaner signature to trigger

Quark hadronise when produced → Measure decay products of hadrons

Stamenkovic, Seminar@UZH, 11.10.21

Reconstructed 2 or more jets from the Higgs boson decay

Stamenkovic, Seminar@UZH, 11.10.21

10

Run: 364214 Event: 117339266

2018-10-23 01:54:02 CEST During one of my ID shift

Charm tagging: identification of the flavour of the hadron inside the jet • Exploit lifetime and mass properties of heavy hadrons • Lifetime and mass of c-hadrons in between b-hadron and light hadrons measured in detector

• Use Machine Learning to distinguish signal = c-jets from background = b-jets and light-jets

12

Charm tagging

Working point optimisation

Charm-tagging performance: challenging but promising!

M. Stamenkovic, Seminar@UZH, 11.10.21

Calibrations

Flavour tagging categorisation

- 2 c-tag: high sensitivity and lower background contamination
- 1 c-tag: recover part of the sensitivity lost in 2 c-tag due to c-tagging performance

M. Stamenkovic, Seminar@UZH, 11.10.21

Validation processes

Validation: measure 2 processes of the SM • VW(cl): mostly sensitive in 1 c-tag • VZ(cc): mostly sensitive in 2 c-tag

M. Stamenkovic, Seminar@UZH, 11.10.21

15

Analysis strategy: how do I reconstruct my Higgs?

VHcc categorisation:

- 2 c-tag + b-veto
- 1 c-tag + b-veto

VHbb categorisation:

• 2 b-tag

Orthogonality with VHbb:

Always < 2 b-tagged jets

Combination with VH(bb) possible!

Categorisation of events with 2 jets

Problem due to flavour tagging perfomance

Solution: truth tagging method

Truth tagging weights

$$TT_{\text{weight}}^{2c-\text{tag}} = \epsilon_1 \times \epsilon_2,$$

 $TT_{\text{weight}}^{1\text{c}-\text{tag}} = \epsilon_1 \times (1 - \epsilon_2) + (1 - \epsilon_1) \times \epsilon_2,$

Solution: truth tagging method

- Re-weight each event by probability to be in 2 c-tag, 1 c-tag, 0 c-tag
 - Calculate c-tagging efficiency per-jets on ttbar samples

 Per jets: account for pT and eta dependence • Effectively use the whole simulated sample in the signal region

• Apply to all samples except signal

 \rightarrow Preserve MC statistics available!

M. Stamenkovic, Seminar@UZH, 11.10.21

ttbar example

Main backgrounds

M. Stamenkovic, Seminar@UZH, 11.10.21

2 jet pTV > 150 GeV

Event categorisation: SR

Channel	c-tag	Jets	
0-lepton	1 and 2 c-tag	2 and 2 into	
1-lepton		z and 5 jeis	
2-lepton		2 and 3+ jets	

Event categorisation:

- Flavour tagging: 1 and 2 c-tag (similar sensitivity)
- Jet multiplicity: 2 and 3(+) jets (+3% total sensitivity stat-only w.r.t merged)
- pTV category: pTV > 150 GeV

Stamenkovic, Seminar@UZH, 11.10.21

2-lepton only: 75 < pTV < 150 GeV (+5% total sensitivity stat-only)

Highest sensitivity ranking: O-lepton, 2-lepton, 1-lepton (same outcome with full syst)

Control regions

Additional CRs to fix the main background from data: → Ensure that signal is properly estimated

M. Stamenkovic, Seminar@UZH, 11.10.21

Constrain Z+jets and W+jets

0 c-tag CR

Constrain Z+light jets and W+ light jets

21

Fit model: 16 SRs +28 CRs

M. Stamenkovic, Seminar@UZH, 11.10.21

Signal and control regions

Acc selection		ΔRcc selection	< \Delta Rcc < 2
SR	Top CR	ΔRcc	c CR
2 c-tag 2 jet		1 c-tag 2 jet	2 c-tag 2
2 c-tag 3 jet	1 c-tag 3 jet	1 c-tag 3 jet	2 c-tag 3
2 c-tag 2 jet		1 c-tag 2 jet	2 c-tag 2
2 c-tag 3 jet	1 c-tag 3 jet	1 c-tag 3 jet	2 c-tag 3
2 c-tag 2 jet	1 c-tag 2 jet	1 c-tag 2 jet	2 c-tag 2
2 c-tag 3+ jet	1 c-tag 3+ jet	1 c-tag 3+ jet	2 c-tag 3+
2 c-tag 2 jet	1 c-tag 2 jet	1 c-tag 2 jet	2 c-tag 2
2 c-tag 3+ jet	1 c-tag 3+ jet	1 c-tag 3+ jet	2 c-tag 3+

Fit to extract signal strength

0-lepton

1-lepton

Fit to the data to extract signal strength: quantify data agreement with SM expectation • All systematics included: detector, flavour tagging, modelling • Floating normalisations for main backgrounds: ttbar, Z+jets and W+jets • Perform fit with 3 parameters of interest (POIs): μ_{VWcl} , μ_{VZcc} , μ_{VHcc}

Goal of the analysis: measure the signal strength UVHcc

Stamenkovic, Seminar@UZH, 11.10.21

2-lepton example

2-lepton

Results

Measurements of VW(cl) and VZ(cc)

Measurement of validation process: • VW(cl) and VZ(cc) measurement in agreement with the SM →Validation of the 1 c-tag and 2 c-tag categories

M. Stamenkovic, Seminar@UZH, 11.10.21

inary		√s=1	3 TeV, 139 fl	o ⁻¹
-Stat.		(Tot.)	(Stat., Sys	st.)
н	1.16	+0.50	(+0.32 +0.02)	.38)
		-0.40	\ -0.32 ⁻ -0.	.337
	0.83	+0.25 0.23	$(\begin{array}{c} +0.11 & +0.00 \\ -0.11 & -0.00 \end{array})$.22)
2	3	4	5 6	<u> </u>
				μ

Diboson fit results: validation of the analysis VZ(cc): 2.6o observed (2.2 expected) VW(cl): **3.8** observed (4.6 expected) \rightarrow First measurement of VZ(cc) and VW(cl) using c-tagging!

M. Stamenkovic, Seminar@UZH, 11.10.21

Mass distributions

Results: limit and signal strength

Result for VH(cc):

- VH(cc) signal strength: -9 ± 10 (stat) ± 12 (syst)
 - Similar size statistical and systematic uncertainties
 - Dominant uncertainties: V+jets and top modelling
- \rightarrow Best limit on VH(cc) up to this day!

M. Stamenkovic, Seminar@UZH, 11.10.21

• Limit on signal strength: $\mu_{H\to cc}$ < 26 x SM@95% confidence level (< 31x SM expected)

N. Stamenkovic, Seminar@UZH, 11.10.21

к framework

 $g_i \to g_i \times \kappa_i$

M. Stamenkovic, Seminar@UZH, 11.10.21

κ framework

 $g_i \to g_i \times \kappa_i$

 $\sigma_{pp \to VH} \times BR_{H \to c\bar{c}} = \sigma_{pp \to VH}^{SM} \times BR_{H \to c\bar{c}}^{SM} \frac{\kappa_V^2 \kappa_c^2}{\kappa_H^2}$

M. Stamenkovic, Seminar@UZH, 11.10.21

к framework

$$g_{i} \rightarrow g_{i} \times \kappa_{i}$$

$$\sigma_{pp \rightarrow VH} \times BR_{H \rightarrow c\bar{c}} = \sigma_{pp \rightarrow VH}^{SM} \times BR_{H \rightarrow c\bar{c}}^{SM} \frac{\kappa_{V}^{2}\kappa_{c}^{2}}{\kappa_{H}^{2}}$$

$$\mu_{VHcc} = \frac{\sigma_{pp \rightarrow VH} \times BR_{H \rightarrow c\bar{c}}}{\sigma_{pp \rightarrow VH}^{SM} \times BR_{H \rightarrow c\bar{c}}^{SM}} = \frac{\kappa_{V}^{2}\kappa_{c}^{2}}{\kappa_{H}^{2}}$$

 κ framework: quantify possible deviations from the SM • Effectively modifies the number of VH(cc) events • For example $\kappa_c = 0$ means Higgs boson doesn't couple to c-quarks

M. Stamenkovic, Seminar@UZH, 11.10.21

κ framework

$$g_{i} \rightarrow g_{i} \times \kappa_{i}$$

$$\sigma_{pp \rightarrow VH} \times BR_{H \rightarrow c\bar{c}} = \sigma_{pp \rightarrow VH}^{SM} \times BR_{H \rightarrow c\bar{c}}^{SM} \frac{\kappa_{V}^{2}\kappa_{i}}{\kappa_{H}^{2}}$$

$$\mu_{VHcc} = \frac{\sigma_{pp \rightarrow VH} \times BR_{H \rightarrow c\bar{c}}}{\sigma_{pp \rightarrow VH}^{SM} \times BR_{H \rightarrow c\bar{c}}^{SM}} = \frac{\kappa_{V}^{2}\kappa_{c}^{2}}{\kappa_{H}^{2}}$$

$$\mu_{VHcc} = \frac{\kappa_{c}^{2}}{1 - BR_{H \rightarrow c\bar{c}} + \kappa_{c}^{2}BR_{H \rightarrow c\bar{c}}}, \forall \kappa_{i} = 1,$$

κ_{c} interpretations

- Only sensitive to κ_c if $\mu < 35$ due to Higgs width in parametrisation

μ VH(cc)

• Assume $\kappa_i = 1$ for other fermions and bosons and no BSM contributions to Higgs width • Direct constraint: κ_c < 8.5 @ 95% CL (<12.4 @ 95% CL expected)

Comparison with other VHcc results?

Sensitivity timeline of VHcc

Higgs mass

- Direct search for VHbb/ VHcc at LHCb with Run 1 data (2/fb) Challenging measurement: focus with event with at least one lepton reconstructed • Current sensitivity: $y^b < 7y^b_{SM}$, $y^c < 80y^c_{SM}$ ~ 6400x SM
 - Flavour tagging performance:
 - b-tagging similar to ATLAS and CMS and c-tagging 10x better on light jet rejection
 - Projection for HL-LHC with upgrades of LHCb detector: 4x SM

M. Stamenkovic, Seminar@UZH, 11.10.21

- Comparison 2-lepton only with 36/fb: +43% sensitivity in latest analysis
- Better performance of flavour tagger + full Run 2 updated calibrations
- Additional control regions to constrain main backgrounds

M. Stamenkovic, Seminar@UZH, 11.10.21

Sensitivity timeline of VHcc

• Outperforming optimistic scaling: assuming that both stat. and syst. scale with luminosity

Comparison ATLAS vs CMS

Comparison with CMS:

- CMS expected limit: 37xSM with 36/fb
- ATLAS expected limit: 31x SM with 139/fb
- ATLAS expected limit only 20% better than CMS with 4x more data

M. Stamenkovic, Seminar@UZH, 11.10.21

36/fb ith 139/fb etter than CMS with 4x more data

Comparison ATLAS vs CMS

Main differences	ATLAS 139/fb	CMS 36/fb	Charm tagging	ATLAS 139/fb	CMS 36
Categorisation	1 c-taa. 2 c-taa	2 c-taa	c-jets	27%	27%
	LCIUS	b-jet	8%	17%	
Discriminant	m(cc)	MVA	light-jets	1.6%	4%
VH(bb) treatment	Orthogonal	Overlap		:	

Key differences between ATLAS and CMS: • Flavour tagging categorisation: CMS uses 2 c-tag only • CMS sensitivity optimised using a machine learning approach VH(bb) treatment: ATLAS analysis orthogonal to VH(bb) Charm tagging: ATLAS performance 2x higher in background rejection Partly due to insertable b-layer in ATLAS tracker

M. Stamenkovic, Seminar@UZH, 11.10.21

Comparison ATLAS vs CMS: breakdown of uncertainties

Comparison of uncertainties for ATLAS and CMS at 36/fb

- Statistical sensitivity: similar results between ATLAS and CMS
- CMS: lower uncertainty on theoretical prediction and size of simulated sample • Rely more on control regions for the backgrounds + larger size of simulated sample

M. Stamenkovic, Seminar@UZH, 11.10.21

	ATLAS	CMS
nty	±23.2	±19.8
	±17.1	±17.2
/	±13.7	±13.2
S.	±7.7	±10.2
	±12.0	±7.24
	± 3.33	± 3.75
	±11.5	± 4.10
lling		± 4.65
	±5.75	±1.2

HL-LHC slide

New result from the ATLAS on Higgs coupling to c-quarks

- Limit on the signal strength: < 26 x SM at 95% confidence level
- Direct constraint on κ_c < 8.5 @ 95% CL
- Excess of VZ(\rightarrow cc) events observed: **2.6** σ
- Excess of VW(\rightarrow cq) events observed: **3.8** σ
- \rightarrow First measurement of VZ(\rightarrow cc) and VW(\rightarrow cq) using c-tagging!

Prospects for Higgs physics and c-tagging at LHC:

- More and more physics analyses using c-tagging
- ATLAS, CMS and LHCb working towards measuring Higgs coupling to charm
 - Evidence at the end of HL-LHC using a combination?

80

100

120

140

160

Back up

Combination with VH(bb)?

Combination of VH(bb) and VH(cc)

Stand-alone analysis

 $\mu_{VH(bb)} = \frac{\kappa_V^2 \kappa_b^2}{\kappa_T^2}$

Combination of VH(bb) and VH(cc):

- Direct probe of the Higgs coupling to charm and bottom quarks only

Combined measurement

 Allows better interpretation of Higgs boson properties with minimal assumptions • Not sensitive to contributions of new physics particles to the Higgs boson decay width

Comparison ZHcc and CMS

	<u>2015+2016 (36 /fb)</u>	Full Run 2
Flavour tagging	c-tagging (MV2 based)	c-tagging + b-tag veto (DL1 vs MV2 based)
Jets categories	2+jets	2 and 3+jets
pTV	Low and high pTV	Low and high pTV
SRs	1 c-tag and 2 c-tag	1 c-tag and 2 c-tag
CRs	Top emu	Top emu, High dR CR, 0 c-tag
VH(bb) treatment	SM bkg SR Overlap	SM bkg Orthogonality in SR
VH(bb) fraction in 2 c-tag	6%	0,7%
Truth tagging	ΔR(jet1,jet2)	Min AR(tagged jet, closest jet2)
FTAG calibrations	36/fb	140/fb, 80/fb for c-jets
Modelling	36/fb	140/fb

Comparison VHcc 139/fb vs ZHcc 36/fb

(c) MC/MC scale factor light-jets

MC/MC

(d) MC/MC scale factor τ -jets

Background modelling

Process	Nominal	Alternative
VH(cc), VH(bb)	Powheg+Pythia8	Powheg+Herwig7 QCD µ _R and µ _F scale variations
\/\/	Sherpa2.2.1 (qq)	Powheg+Pythia8
V V	Sherpa 2.2.2 (gg)	QCD μ_R and μ_F scale variations
Z+jets and W+jets	Sherpa2.2.1	MadGraph5+Pythia8 QCD µ _R and µ _F scale variations
ttbar + single top	Powheg+Pythia8	MadGraph5+aMC@NLO+Pythia8 Powheg+Herwig7 ISR / FSR
Single top only		Diagram subtraction + removal

Difference between nominal and alternative MC generators taken as uncertainty: • Normalisation uncertainties: relative difference on total yield predictions • Applied to subdominant processes (i.e. Diboson, VH): phase space acceptance • Acceptance ratios: relative differences in predictions for categories

- pTV and Njet
- Channel extrapolations: different predictions per channel
- SR / CR extrapolation: different predictions per region

M. Stamenkovic, Seminar@UZH, 11.10.21

• Flavour composition ratios: different flavour / processes predictions per categories • M(cc) Shape uncertainties: account for differences in binned m(cc) distribution prediction • In addition: theory uncertainties for cross-section and branching fraction for VH(cc)

- O-lepton: Z+hf, Z+mf, Z+lf, W+hf, W+mf, W+lf, top(b), top(other)
- 1-lepton: W+hf, W+mf, W+lf, top(b), top(other)

• 2-lepton: Z+hf, Z+mf, Z+l

Subdominant backgrounds: VH(bb), single top s+t, QCD multi-jets, diboson (non c-jets) Signal: VH(cc), VW(cq) and VZ(cc)

M. Stamenkovic, Conference Approval Meeting, 01.06.21

2 jets, pTV > 150 GeV Process Label Description Z+(bb,cc) Z+hf Heavy flavours Z+(cl,bl,bc) Mixed flavours Z+mf Light flavours 7+lf

Z+(II)	Z+lf	Light flo
W+(bb,cc)	W+hf	Heavy f
W+ (cl,bl,bc,bτ,cτ)	W+mf	Mixed f
₩+(II,Iτ)	W+If	Light flo
ttbar + Wt	top(b)	≥1 b
	top(other)	0 b-

-jet

Background modelling

Floating normalisations:

- Heavy flavour: Zhf and Whf
- Mixed flavour: Zmf and Wmf
- Light flavour: Zlf and Wlf
- top(b) and top(other) (0- and 1-lepton)
- ttbar (2-lepton)

Acceptance, flavour and channel ratios:

- pTV (2-lepton): high pTV / low pTV
- Njet: 3 jets / 2 jets for V+jets and 2 jets / 3 jets for ttbar
- Flavour composition:
- bb / cc, bl / cl , bc/ cl for W+jets and Z+jets
- $b\tau$ / cl, $c\tau$ / cl, $l\tau$ / l for W+jets
- Wt / ttbar for top(b)
- SR / top CR, high ΔR CR / SR

 Channel: 0-lepton / 1-lepton, 0-lepton / 2-lepton Shape uncertainties: on m(cc) for each bkg subcomponent Data driven: QCD multi-jets in 1-lepton

$VH(\rightarrow bb)$	
$WH(\rightarrow bb)$ normalisation	27%
$ZH(\rightarrow b\bar{b})$ normalisation	25%
Diboson	
WW/ZZ/WZ acceptance	10/5/12%
$p_{\rm T}^V$ acceptance	4%
N _{iet} acceptance	7 - 11%
7 i inte	
Z + Jets	Floating
Z+nf normalisation	Floating
Z+my normalisation	Floating
Z+ij normalisation	Floating
Z + bb to $Z + cc$ ratio	20%
Z + bl to $Z + cl$ ratio	18%
Z + bc to $Z + cl$ ratio	0%
$p_{\rm T}$ acceptance	1-8%
N _{jet} acceptance	10 - 37%
High ΔR CR to SR	12 - 37%
0- to 2-lepton ratio	4 – 5%
W+jets	
W+hf normalisation	Floating
W+mf normalisation	Floating
W+lf normalisation	Floating
W + bb to $W + cc$ ratio	4 - 10 %
W + bl to $W + cl$ ratio	31 – 32 %
W + bc to $W + cl$ ratio	31 – 33 %
$W \rightarrow \tau \nu(+c)$ to $W + cl$ ratio	11%
$W \rightarrow \tau v(+b)$ to $W + cl$ ratio	27%
$W \rightarrow \tau v(+l)$ to $W + l$ ratio	8%
N _{iet} acceptance	8 - 14%
High ΔR CR to SR	15 – 29%
$W \rightarrow \tau \nu$ SR to high ΔR CR ratio	5 - 18%
0- to 1-lepton ratio	1-6 %
Ton quark (0, and 1 lantan)	
top (h) normalisation	Floating
top(b) normalisation	Floating
top(other) normalisation	Floating
N _{jet} acceptance	/ - 9%
0- to 1-lepton ratio	4%
SR/top CR acceptance (<i>tt</i>)	9%
SR/top CR acceptance (Wt)	16%
wt / tt ratio	10%
Top quark (2-lepton)	
Normalisation	Floating
Multi-jet (1-lepton)	
Normalisation	20 - 100%

Charm tagging calibrations

Charm tagging performance

Background composition plots: postfit 0-lepton

M. Stamenkovic, Seminar@UZH, 11.10.21

Background composition plots: postfit 1-lepton

M. Stamenkovic, Seminar@UZH, 11.10.21

3 jets

Background composition plots: postfit 2-lepton

2 jets

≥3 jets

M. Stamenkovic, Seminar@UZH, 11.10.21

2 jets

≥3 jets

Postfit SR

1 c-tag

2 c-tag

M. Stamenkovic, Seminar@UZH, 11.10.21

Postfit distributions: 1-lepton 2 jets 3 jets

1 c-tag

2 c-tag

M. Stamenkovic, Seminar@UZH, 11.10.21

Postfit distributions: 2-lepton

pTV > 150 GeV 3+ jets 2 jets

Event displays

Event displays

0-lepton

M. Stamenkovic, Seminar@UZH, 11.10.21

1-lepton

2-lepton

$$\mathcal{L}(\mu, \vec{\theta}, \vec{\gamma}) = \prod_{i \in \text{bins}} \text{Pois}(N_i | \mu s_i(\vec{\theta}) + \gamma_i b_i)$$
POI Poissonian likelihood

Binned profile likelihood fit on m(cc) distribution simultaneously in all regions

3 parameters of interest (POIs):

- $\mu_{VH(cc)}$: signal strength of VH(cc) signal
- $\mu_{VZ(cc)}$: signal strength of VZ(cc) diboson \rightarrow validation of 2 c-tag category • $\mu_{VW(cq)}$: signal strength of VW(cq) diboson \rightarrow validation of 1 c-tag category

Background: floating normalisations of main backgrounds

Nuisance parameters (NPs)

- Full set of modelling uncertainties
- MC stat. uncertainty

M. Stamenkovic, Seminar@UZH, 11.10.21

Fit strategy

• Full set of detector systematics: trigger, jets, leptons, c/b-tagging, pile-up, luminosity

Event selection / Uncertainties

	Common Selections
Central jets Signal jet <i>p</i> _T <i>c</i> -jets <i>b</i> -jets Jets	≥ 2 ≥ 1 signal jet with $p_T > 45$ GeV 1 or 2 <i>c</i> -tagged signal jets No <i>b</i> -tagged non-signal jets 2, 3 (0- and 1-lepton), 2, ≥ 3 (2-lepton)
$p_{\rm T}^V$ regions	75–150 GeV (2-lepton) > 150 GeV
ΔR (jet 1, jet 2)	$\begin{array}{l} 75 < p_{\rm T}^V < 150 \; {\rm GeV} \colon \Delta R \leq 2.3 \\ 150 < p_{\rm T}^V < 250 \; {\rm GeV} \colon \Delta R \leq 1.6 \\ p_{\rm T}^V > 250 \; {\rm GeV} \colon \Delta R \leq 1.2 \end{array}$
	0 Lepton
Trigger Leptons E_{T}^{miss} p_{T}^{miss} H_{T} min $ \Delta\phi(E_{T}^{miss}, jet) $ $ \Delta\phi(E_{T}^{miss}, H) $ $ \Delta\phi(jet1, jet2) $ $ \Delta\phi(E_{T}^{miss}, p_{T}^{miss}) $	$E_{\rm T}^{\rm miss}$ 0 <i>loose</i> leptons > 150 GeV > 30 GeV > 120 GeV (2 jets), > 150 GeV (3 jets) > 20° (2 jets), > 30° (3 jets) > 120° < 140° < 90°
	1 Lepton
Trigger Leptons $E_{\rm T}^{\rm miss}$ $m_{\rm T}^W$	<i>e</i> sub-channel: single electron μ sub-channel: $E_{\rm T}^{\rm miss}$ 1 <i>tight</i> lepton and no additional <i>loose</i> leptons > 30 GeV (<i>e</i> sub-channel) < 120 GeV
	2 Lepton
Trigger Leptons <i>m_{ll}</i>	single lepton 2 <i>loose</i> leptons Same flavour, opposite-charge for $\mu\mu$ 81 < m_{ll} < 101 GeV

$VH(\rightarrow b\bar{b})$	
$WH(\rightarrow b\bar{b})$ normalisation	27%
$ZH(\rightarrow b\bar{b})$ normalisation	25%
Diboson	
WW/77/W7 acceptance	10/5/12%
n^{V} acceptance	10/5/12 /0
$p_{\rm T}$ acceptance	7-11%
Njet acceptance	7 - 1170
Z+jets	
Z+hf normalisation	Floating
Z+mf normalisation	Floating
Z+lf normalisation	Floating
Z + bb to $Z + cc$ ratio	20%
Z + bl to $Z + cl$ ratio	18%
Z + bc to $Z + cl$ ratio	6%
$p_{\rm T}^V$ acceptance	1 - 8%
N _{jet} acceptance	10 - 37%
High ΔR CR to SR	12 - 37%
0- to 2-lepton ratio	4 - 5%
W+iets	
W + hf normalisation	Floating
W+mf normalisation	Floating
W + lf normalisation	Floating
W + bb to $W + cc$ ratio	4 - 10%
W + bl to W + cl ratio	31 - 32 %
W + bc to $W + cl$ ratio	31 - 33%
$W \rightarrow \tau v(+c)$ to $W + cl$ ratio	11%
$W \rightarrow \tau v(\pm b)$ to $W \pm cl$ ratio	27%
$W \rightarrow \tau v (\pm l)$ to $W \pm l$ ratio	2770
$W \rightarrow i V(\pm i)$ to $W \pm i$ fatto	8 140
High APCP to SP	15 20%
High $\Delta K CK$ to SK	5 19%
$W \rightarrow \tau \nu$ SR to high ΔR CR ratio	5 - 18%
0- to 1-lepton ratio	1 - 6 %
Top quark (0- and 1-lepton)	
top(b) normalisation	Floating
top(other) normalisation	Floating
N _{jet} acceptance	7 - 9%
0- to 1-lepton ratio	4%
SR/top CR acceptance $(t\bar{t})$	9%
SR/top CR acceptance (Wt)	16%
$Wt / t\bar{t}$ ratio	10%
Top quark (2-lepton)	
Normalisation	Floating
Multi-jet (1-lepton)	
Normalisation	20-100%

Generators

Process	ME generator	ME PDF	PS and hadronisation	Tune	Cross-section order
$\begin{array}{c} q q \rightarrow V H \\ (H \rightarrow c \bar{c} / b \bar{b}) \end{array}$	Powheg-Box v2 + GoSam + MiNLO	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NNLO(QCD) +NLO(EW)
$\begin{array}{c} gg \rightarrow ZH \\ (H \rightarrow c \bar{c} / b \bar{b}) \end{array}$	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NLO+NLL
tĪ	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	NNLO +NNLL
<i>t/s</i> -channel single top	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	NLO
<i>Wt</i> -channel single top	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	Approx. NNLO
V+jets	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$qq \rightarrow VV$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
$gg \rightarrow VV$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	Default	NLO

A. Stamenkovic, Seminar@UZH, 11.10.21

Breakdown of uncertainties

- Similar statistical and systematic un
- Dominant systematic uncertainties:
 - Background modelling: V+jets an
 - Simulation statistics: MC stat

Will improve with latest generators and simulated events!

Breakdown of uncertainties

	Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	μ_{V}
	Total		15.3	0.24	
	Statistical		10.0	0.11	
	Systematics		11.5	0.21	
certainties	Statistical uncertainties	S			
	Data statistics only	7.8	0.05		
	Floating normalisation	5.1	0.09		
d tthar	Theoretical and model	ling uncertainties			
	$VH(\rightarrow c\bar{c})$		2.1	< 0.01	
	Z+jets		7.0	0.05	
	Top-quark	3.9	0.13		
	W+jets	3.0	0.05		
	Diboson	1.0	0.09		
•	$VH(\rightarrow b\bar{b})$		0.8	< 0.01	
d more	Multi-Jet	1.0	0.03		
	Simulation statistics	4.2	0.09		
	Experimental uncertain				
	Jets	2.8	0.06		
	Leptons		0.5	0.01	
	$E_{\mathrm{T}}^{\mathrm{miss}}$		0.2	0.01	
	Pile-up and luminosity	0.3	0.01		
		<i>c</i> -jets	1.6	0.05	
	Eleveur tegging	<i>b</i> -jets	1.1	0.01	
	Flavour tagging	light-jets	0.4	0.01	
		au-jets	0.3	0.01	
	Tranth Barrows to a star	ΔR correction	3.3	0.03	
	Trum-navour tagging	Residual non-closure	1.7	0.03	

2 Higgs doublet model

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h_1 \end{pmatrix}, \ \phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} H^+\\ h_2+ih_3 \end{pmatrix}$$

M. Stamenkovic, Seminar@UZH, 11.10.21

2 Higgs doublet model

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h_1 \end{pmatrix}, \ \phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} H^+\\ h_2+ih_3 \end{pmatrix}$$

Physical bosons

 $h = \sin (\beta - \alpha)h_1 + \cos (\beta - \alpha)h_2,$ $H = -\cos (\beta - \alpha)h_1 + \sin (\beta - \alpha)h_2$

M. Stamenkovic, Seminar@UZH, 11.10.21

2 Higgs doublet model

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h_1 \end{pmatrix}, \ \phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} H^+\\ h_2+ih_3 \end{pmatrix}$$

Physical bosons

 $h = \sin \left(\beta - \alpha\right) h_1 + \cos \left(\beta - \alpha\right) h_2,$ $H = -\cos{(\beta - \alpha)h_1} + \sin{(\beta - \alpha)h_2}$

Affects Yukawa coupling of 125 GeV Higgs boson $\lambda_{q_u,\bar{q}_u}^h = y_{q_u}^{SM} \sin\left(\beta - \alpha\right) + y_{q_u}' \cos\left(\beta - \alpha\right)$ $\lambda_{q_d,\bar{q}_d}^h = y_{q_d}^{SM} (\sin\left(\beta - \alpha\right) + \xi\cos\left(\beta - \alpha\right))$

Spontaneous flavour violation: <u>arXiv:1908:11376</u> • FCNC avoided by keeping Yukawa matrices of second doublet diagonalisable with first doublet

2 Higgs doublet model

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h_1 \end{pmatrix}, \ \phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} H^+\\ h_2+ih_3 \end{pmatrix}$$

Physical bosons

 $h = \sin \left(\beta - \alpha\right) h_1 + \cos \left(\beta - \alpha\right) h_2,$ $H = -\cos{(\beta - \alpha)h_1} + \sin{(\beta - \alpha)h_2}$

Affects Yukawa coupling of 125 GeV Higgs boson $\lambda_{q_u,\bar{q}_u}^h = y_{q_u}^{SM} \sin\left(\beta - \alpha\right) + y_{q_u}' \cos\left(\beta - \alpha\right)$ $\lambda_{a_d,\bar{a}_d}^h = y_{a_d}^{SM} (\sin\left(\beta - \alpha\right) + \xi\cos\left(\beta - \alpha\right))$

Spontaneous flavour violation: <u>arXiv:1908:11376</u> • Higgs boson coupling to charm quarks potentially enhanced by factor 3!

M. Stamenkovic, Seminar@UZH, 11.10.21

Theory enhanced H->cc couplings

2HDM : paper TeV scale new physics lambda = 1.5 TeV: paper

Enhanced coupling 3-5x SM in c,s,d,u yukawa

