

Longitudinal beam dynamics & diagnostics

Marit Klein Nicole Hilller Vitali Judin

Institut für Synchrotronstrahlung (ISS) / Laboratorium für Applikationen der Synchrotronstrahlung (LAS) - Nicole Hiller

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Karlsruhe Institute of Technology

Overview

Introduction

- Coherent synchrotron radiation (CSR)
- The low alpha mode
- Time structures at ANKA
- Wake fields and impedances
 - Self fields
- Potential well distortion
 - Bunch shape
 - Bunch length —> Nicole's talk
- Bursting stable threshold
 - Microbunching
 - Bursting behavior Vitali's talk
- Power spectra of coherent radiation

Coherent synchrotron radiation (CSR)

- Short bunches emit usable coherent synchrotron radiation
- Enormous increase in power in comparison to incoherent emission
- Dedicated optics with negative dispersion in the long and short straight sections for flexible bunch length tuning
 - Low-α_c optics

Marit Klein

Institut für Synchrotronstrahlung

- Coherent radiation is produced in two regimes:
 - Iow power stable emission
 - high power radiation bursts

30. Juni 2010

The low-alpha mode

Low-alpha user operation: 12 days/year

Operation procedure:

- Fill at 0.5 GeV
- Ramp energy (regular optics) to 1.3 GeV
- Low-α_c "squeeze"
 - change quadrupoles & sextupoles
 - orbit correction between steps

Observed α_c range as derived from Q_s measurements:

▶ from 7.2 10⁻³ to 1.4 10⁻⁴

30. Juni 2010

Time scales at ANKA

Wake fields and impedances

- Wake fields are el.-mag. fields which are left behind by a particle
- They influence the motion of following particles
- The impedance is the fourier transform of the wake field
- Wake fields / impedances interact with the environment

Self fields

- The CSR wake field can act back on the same bunch
- Different ways to model the CSR wake / impedance:
 - free space, no shielding
 - shielding by ideal conducting parallel plates
 - shielding by rectangular beam pipe
- Electrons in the head of the bunch are accelerated, electrons in the tail of the bunch are decelerated.

T. Agoh, "Dynamics of Coherent Synchrotron Radiation by Paraxial Approximation", Doctoral Thesis

Institut für Synchrotronstrahlung

Potential well distortion

- The CSR wake can distort the longitudinal potential well
- The equilibrium bunch distribution of the distorted bunch can be calculated iteratively
- The integral over the bunch distribution F(κ) connects the bunch shapes with accelerator parameters

Bunch shape

Bunch length

Low currents: Converging to the zero current bunch length
Above bursting stable threshold: Turbulent bunch lengthening

The bursting stable threshold

- Measured bursting stable threshold with Si bolometer
- Good agreement with theoretical prediction:

Microbunching

Bursting behavior

Measured and Expected Spectra

- The CSR spectrum is the Fourier transform of the electron distribution
- Present Michelson interferometer: No information about low frequencies
 - Martin Puplett Interferometer
- Expectation from streak cam. measurement below cutoff
- Explanation: substructure or stronger deformation
 - Single shot measurement needed: Nicole's talk

Overview - Time domain bunch length & shape measurements

- Introduction
- Methods
 - Streak camera (currently in use)
 - Electro-optic techniques (will be implemented)
- Conclusion & outlook

Streak camera - working principle

Allows measurement of intensity distribution of visible synchrotron light pulses

electrons → photons → electrons → photons → averaging needed

picture source: http://www.mpg.de/

Nicole.Hiller@kit.edu - Measurements of Bunch Length and Shape at the ANKA Storage Ring

Quasar & THz Workshop 2010

Obtaining bunch profiles from SC images

Obtaining bunch profiles from SC images

17

Nicole.Hiller@kit.edu - Measurements of Bunch Length and Shape at the ANKA Storage Ring

Quasar & THz Workshop 2010

Tuesday, September 7, 2010

Obtaining bunch profiles from SC images

Correct oscillation and project onto fast time axis → smooth bunch profile

Problem: broadening due to SC resolution and jitter

Nicole.Hiller@kit.edu - Measurements of Bunch Length and Shape at the ANKA Storage Ring

Quasar & THz Workshop 2010

18

Current dependent bunch lengthening

Streak camera - limitations

- **resolution:** 1 pixel \triangleq 0.4 ps further limited by:
 - slit opening
 - jitter on trigger signal
 - Iaser calibration measurements show:

measured pulse length will not go below 1.7 ps (rms)

- value is quadratically subtracted from bunch length
- can only separate bunches in odd and even RF buckets (for slow axis > 100 ns, 100-500 µs needed for good signal) because fast sweep is controlled by a consecutive sinusoidal signal at f_{RF} / 2 = 250 MHz

Nicole.Hiller@kit.edu - Measurements of Bunch Length and Shape at the ANKA Storage Ring

Quasar & THz Workshop 2010

20

Electro-optic techniques - working principle

Intensity distribution of electron bunch is modulated on laser pulse which is then analysed

Modulation in electro-optic crystal:

Electro-optical sampling (multi shot)

short laser pulses sampling the electron bunch at different delays over several revolutions / or different shots

 limited by ToAvariations of electron bunches

also possible to use "asynchronous sampling" for which the laser is slightly detuned from revolution frequency

Conclusion & outlook

Streak camera

- deconvolution of bunch shape not yet fully understood (work in progress)
- not properly usable for multi-bunch
- EO set up will allow single shot measurements and a better temporal resolution

Thank you for your attention!

Nicole.Hiller@kit.edu - Measurements of Bunch Length and Shape at the ANKA Storage Ring

Quasar & THz Workshop 2010

Karlsruher Institut für Technologie

Coulomb field

Coulomb field

Nicole.Hiller@kit.edu - Measurements of Bunch Length and Shape at the ANKA Storage Ring

Quasar & THz Workshop 2010

27

Tuesday, September 7, 2010

Coulomb field

for a highly relativistic "long" (>1ps) electron bunch

- $E_{r,Q}(t) \sim Q(t)$ (every electron has their own really thin pancake; pancakes don't overlap)
- Frequency components are given by Fourier transform

Nicole.Hiller@kit.edu - Measurements of Bunch Length and Shape at the ANKA Storage Ring

Quasar & THz Workshop 2010