Recent Work on Beam Dynamics

David Newton

david.newton@liverpool.ac.uk

University of Liverpool, Cockcroft Institute QUASAR THz Workshop 5-9/9/2010

Outline

- Analytic Particle Tracking with Lie Algebra from Arbitrary Magnetic Fields
- Synchrotron Radiation Calculations
- Particle Energy Modulation Experiments
- Conclusions and future work

Analytic Particle Tracking

- A tracking code has been written in C++ which generates an analytical description of an arbitrary magnetic field and generates a Lie Map to track the particle
- The analytical field description
 - Describes the field in terms of a normal and skew multipole expansion
 - Automatically includes fringe field and non-linear components
 - Has proved useful in understanding novel magnet design
- The Symplectic Integrator
 - Uses the analytical description of the field to generate a Lie Map
 - The Lie map transports particles in a much more efficient manner than numerical tracking
 - Lie maps are calculated with a custom DA (Differential Algebra) code
 - Offers huge savings in time for a given accuracy

Generating Analytical Field Maps

For a periodic structure, of period λ_{ω} , a general scalar potential can be written:

$$\Psi = \sum_{m=0}^{\infty} \int_{-\infty}^{\infty} dk \exp(ikz) I_m(k\rho) [(\hat{b}_m(k)\sin(m\phi) + \hat{a}_m(k)\cos(m\phi)]$$

 I_m are the modified Bessel functions which can be expressed as a Taylor expansion:

$$I_m(x) = \sum_{L=0}^{\infty} \frac{1}{L!(m+L)!} \left(\frac{x}{2}\right)^{2L+m}$$

and \hat{a}_m and \hat{b}_m are arbitrary coefficients.

(see Alex J. Dragt - "Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics") From this, the vector potentials can be written as:

 $A_{\phi} = 0$

$$A_{\rho} = \sum_{m=1}^{\infty} \frac{\cos(m\phi)}{m} \rho \frac{\partial}{\partial z} \psi_{\omega,s} - \frac{\sin(m\phi)}{m} \rho \frac{\partial}{\partial z} \psi_{\omega,c}$$
$$A_{z} = \sum_{m=1}^{\infty} -\frac{\cos(m\phi)}{m} \rho \frac{\partial}{\partial \rho} \psi_{\omega,s} + \frac{\sin(m\phi)}{m} \rho \frac{\partial}{\partial \rho} \psi_{\omega,c}$$

Symplectic Integrator

$$\mathcal{M} = \exp\left(: -\frac{\Delta\sigma}{2}P_z:\right) \exp\left(: -\frac{\Delta\sigma}{2}a_z:\right) \exp\left(: -\frac{\Delta\sigma}{2}\left(-\delta + \frac{P_x^2}{2(1+\delta)}\right):\right)$$
$$A_y \exp\left(: -\Delta\sigma \frac{P_y^2}{2(1+\delta)}:\right) A_y^{-1} \exp\left(: -\frac{\Delta\sigma}{2}\left(-\delta + \frac{P_x^2}{2(1+\delta)}\right):\right)$$
$$\exp\left(: -\frac{\Delta\sigma}{2}a_z:\right) \exp\left(: -\frac{\Delta\sigma}{2}P_z:\right)$$

where $(-:H:)f = \frac{\partial f}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial H}{\partial q_i}$ and the operators A_y and A_y^{-1} involve the vector potential. (see Wu, Forest and Robin,2001)

The end result is a transfer matrix which transports a particle from an initial position, X_i to a final position, X_f in one step.

$$\mathcal{M} X_i(x, p_x, y, p_y, z, \delta) = X_f(x, p_x, y, p_y, z, \delta)$$

Cesr Wiggler Field Description, B_{ρ}

Comparing the numerical (left) and analytic field descriptions

Cesr Wiggler Tracking

The ILC Helical Undulator

- The ILC plans to produce positrons by firing 10 MeV synchrotron photons at a target and capturing the pair-production positrons
- The 10 MeV photons will be produced with a 150 GeV electron beam in a helical undulator ~ 250 m long, ~ 100 periods per metre
- Calculating the photon yield from such a long undulator requires a very fast accurate code
 - There are two codes (SPUR, SPECTRA) currently available that can handle such long undulator systems, but both are very slow
 - SPUR typical run time for a 20 m section: \sim 3 hours (40 cores)
 - SPECTRA typical run time for a 20 m section: \sim several days
- The Analytical tracking code has been amended to include a synchrotron calculation module
 - Typical run time for a 50 m section \sim 5 minutes

ILC Helical Undulator

A single period of the ILC helical undulator

Undulator Tracking - 1 period

Synchrotron Radiation Calculation

The observed electric field of the emitted radiation is:

$$\vec{E}(t) = \frac{e}{4\pi\epsilon_0 c} \left(\frac{c(1-|\vec{\beta}|^2)(\vec{n}-\vec{\beta})}{|\vec{R}|^2(1-\vec{n}\vec{\beta})^3} + \frac{\vec{n}\times[(\vec{n}-\vec{\beta})\times\vec{\beta}]}{|\vec{R}|(1-\vec{n}\vec{\beta})^3} \right)_{RET}$$

 $\vec{n}, \vec{\beta}, \vec{\beta}$ and R can be calculated directly from the canonical coordinates.

Energy spectrum

Observed at the end of a single undulator section (155 periods)

Power incident at the end of the undulator

38.281 MeV is radiated, ~ 0.02 % of the electron energy

- An experiment is under way to modulate the energy of a 30 MeV electron beam using a radiation pulse generated by a TeraWatt laser.
 - Currently being installed on ALICE, Daresbury laboratory
- A pulse of radiation will be generated using a TeraWatt laser and a photoconductive wafer under a high bias voltage
- The pulse of radiation will be radially polarised with a longitudinal component Salomin potential
- The longitudinal component will interact with the electron beam and and modulate the energy
- The modulation will be observed at a dispersive region immediately after the interaction point
- My contribution
 - Modelling the surge current in the photoconductive wafer
 - Modelling the EM pulse generated at the wafer surface
 - Simulate the interaction of the beam and the EM pulse
 - Characterise the beam modulation and determine a method of measuring it

The pulse envelope of a radially polarised pulse, focused at 2 m, with a phase velocity of $\sim 1.02\,C$

Evolution of the pulse shape during propagation

The longitudinal electric field experienced by a reference particle

Future Work

- ILC Undulator
 - Code development and optimisation is complete
 - Upgrade simulation runs to full undulator length
 - In order to track electron bunches HPT options are being considered
 - GRID computing, GPU, CONDOR
- Energy Modulation
- Installation is currently under way at Daresbury
- Simulations will continue to model the interaction of the beam with the pulse
- Simulation results will feed back into laser operation
- Aim is to complete the experiment by the end of the year