Recent Work on Beam Dynamics

David Newton

david.newton@liverpool.ac.uk

University of Liverpool, Cockcroft InstituteQUASAR THz Workshop5-9/9/2010

Outline

- Analytic Particle Tracking with Lie Algebra from Arbitrary Magnetic Fields
- Synchrotron Radiation Calculations \bullet
- Particle Energy Modulation Experiments \bullet
- Conclusions and future work \bullet

Analytic Particle Tracking

- A tracking code has been written in C_{++} which generates an analytical description of an arbitrary magnetic field and generates ^a Lie Map totrack the particle
- The analytical field description
	- Describes the field in terms of ^a normal and skew multipoleexpansion
	- Automatically includes fringe field and non-linear components \bullet
	- Has proved useful in understanding novel magne^t design
- The Symplectic Integrator
	- Uses the analytical description of the field to generate ^a Lie Map
	- The Lie map transports particles in ^a much more efficient manner \bullet than numerical tracking
	- Lie maps are calculated with ^a custom DA (Differential Algebra)code
	- Offers huge savings in time for ^a given accuracy

Generating Analytical Field Maps

For a periodic structure, of period λ_ω , a general scalar potential can be written:

$$
\Psi = \sum_{m=0}^{\infty} \int_{-\infty}^{\infty} dk \exp(ikz) I_m(k\rho) [(\hat{b}_m(k)\sin(m\phi) + \hat{a}_m(k)\cos(m\phi)]
$$

 I_m are the modified Bessel functions which can be expressed as a Taylor expansion:

$$
I_m(x) = \sum_{L=0}^{\infty} \frac{1}{L!(m+L)!} \left(\frac{x}{2}\right)^{2L+m}
$$

and \hat{a}_m and \hat{b}_m are arbitrary coefficients.

 (see Alex J. Dragt - "Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics") From this, the vector potentials can be written as:

 $A_{\phi}=0$

$$
A_{\rho} = \sum_{m=1}^{\infty} \frac{\cos(m\phi)}{m} \rho \frac{\partial}{\partial z} \psi_{\omega,s} - \frac{\sin(m\phi)}{m} \rho \frac{\partial}{\partial z} \psi_{\omega,c}
$$

$$
A_{z} = \sum_{m=1}^{\infty} -\frac{\cos(m\phi)}{m} \rho \frac{\partial}{\partial \rho} \psi_{\omega,s} + \frac{\sin(m\phi)}{m} \rho \frac{\partial}{\partial \rho} \psi_{\omega,c}
$$

Symplectic Integrator

$$
\mathcal{M} = \exp\left(\div -\frac{\Delta\sigma}{2}P_z\div\right)\exp\left(\div -\frac{\Delta\sigma}{2}a_z\div\right)\exp\left(\div -\frac{\Delta\sigma}{2}\left(-\delta + \frac{P_x^2}{2(1+\delta)}\right)\div\right)
$$

$$
A_y \exp\left(\div -\Delta\sigma \frac{P_y^2}{2(1+\delta)}\div\right)A_y^{-1} \exp\left(\div -\frac{\Delta\sigma}{2}\left(-\delta + \frac{P_x^2}{2(1+\delta)}\right)\div\right)
$$

$$
\exp\left(\div -\frac{\Delta\sigma}{2}a_z\div\right)\exp\left(\div -\frac{\Delta\sigma}{2}P_z\div\right)
$$

where $(- : H :)f =$ and the operators A_y and A_y^{-1} involve the $=\frac{\partial f}{\partial q_i}\frac{\partial H}{\partial p_i}$ $-\frac{\partial f}{\partial p_i}$ ∂H $\partial q_{\textit{i}}$ 1 y^{-1} involve the vector potential. (see Wu, Forest and Robin, 2001)

The end result is a transfer matrix which transports a particle from an initial position, X_i to a final position, X_f in one step.

$$
\mathcal{M}\,X_i(x,p_x,y,p_y,z,\delta)=X_f(x,p_x,y,p_y,z,\delta)
$$

Cesr Wiggler Field Description, B ρ

Comparing the numerical (left) and analytic field descriptions

Cesr Wiggler Tracking

The ILC Helical Undulator

- The ILC plans to produce positrons by firing 10 MeV synchrotronphotons at ^a target and capturing the pair-production positrons
- The 10 MeV photons will be produced with ^a 150 GeV electron beam ina helical undulator \sim 250 m long, \sim 100 periods per metre
- Calculating the photon yield from such ^a long undulator requires ^a veryfast accurate code
	- There are two codes (SPUR, SPECTRA) currently available that canhandle such long undulator systems, but both are very slow
	- SPUR typical run time for a 20 m section: \sim 3 hours (40 cores)
	- SPECTRA typical run time for ^a 20 ^m section:∼ several days
- The Analytical tracking code has been amended to include a synchrotron calculation module
	- Typical run time for a 50 m section \sim 5 minutes

ILC Helical Undulator

A single period of the ILC helical undulator

Undulator Tracking - 1 period

Synchrotron Radiation Calculation

The observed electric field of the emitted radiation is:

˙

$$
\vec{E}(t) = \frac{e}{4\pi\epsilon_0 c} \left(\frac{c(1-|\vec{\beta}|^2)(\vec{n}-\vec{\beta})}{|\vec{R}|^2(1-\vec{n}\vec{\beta})^3} + \frac{\vec{n} \times [(\vec{n}-\vec{\beta}) \times \dot{\vec{\beta}}]}{|\vec{R}|(1-\vec{n}\vec{\beta})^3} \right)_{RET}
$$

 $\vec{n},\ \vec{\beta},$ $\vec{\beta}$ and R can be calculated directly from the canonical coordinates.

Energy spectrum

Observed at the end of ^a single undulator section (155 periods)

Power incident at the end of the undulator

38.281 MeV is radiated, ~ 0.02 % of the electron energy

- An experiment is under way to modulate the energy of a 30 MeV electron beam using ^a radiation pulse generated by ^a TeraWatt laser. Currently being installed on ALICE, Daresbury laboratory
- A pulse of radiation will be generated using ^a TeraWatt laser and ^aphotoconductive wafer under ^a high bias voltage
- The pulse of radiation will be radially polarised with ^a longitudinalcomponen^t - Salomin potential
- The longitudinal componen^t will interact with the electron beam and and modulate the energy
- The modulation will be observed at a dispersive region immediately after the interaction point
- My contribution
	- Modellling the surge current in the photoconductive wafer
	- Modelling the EM pulse generated at the wafer surface
	- Simulate the interaction of the beam and the EM pulse
	- Characterise the beam modulation and determine ^a method ofmeasuring itRecent Work on Beam Dynamics – p.14/18

The pulse envelope of ^a radially polarised pulse, focused at 2 m, with ^a phasevelocity of $\sim1.02\,C$

Evolution of the pulse shape during propagation

The longitudinal electric field experienced by ^a reference particle

Future Work

- ILC Undulator
	- Code development and optimisation is complete
	- Upgrade simulation runs to full undulator length
	- In order to track electron bunches HPT options are being considered
		- GRID computing, GPU, CONDOR
- Energy Modulation
- Installation is currently under way at Daresbury
- Simulations will continue to model the interaction of the beam with thepulse
- Simulation results will feed back into laser operation
- Aim is to complete the experiment by the end of the year