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R.J. Barlow, Statistics (Wiley)
S. Brand, Data Analysis (Springer)

I||||.._,, Literature
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F. James, Statistical Methods in Experimental Physics (World Scientific)
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D.E. Knuth, The Art of Computer Programming (Addison Wesley)

W.T. Press et al., Numerical Recipes (Cambridge University Press)

D.S. Sivia, Data Analysis - A Bayesian Tutorial (Oxford University Press)
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. 1.INTROD

Measurement

< N

Analysis
#include <stdio.h>
#include <stdlib.h
¥include <math.h>
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b 28cs

DISCLAIMER

=?» do not start from scratch - assume. . .

O intuitive understanding of probability
O familiarity with statistical fluctuations and measurement noise
O basic math
=¥ calculus
=» linear algebra
=» Dirac’s delta-function
=» Einstein’s convention to sum over repeated indices
O some knowledge about expectation value
O experience with fitting

a...
some of the above will be repeated in the following. . .

hopefully from a new and interesting angle. . .



b _propaniny Densty runctions S

< DEFINITION:

A function f(z) is a “Probability Density Functions” (PDF) if

+oo
f(z)>0 Yz and def(z)=1.

—oo

% INTERPRETATION OF f(z):

The probability p(z, z 4+ dz) that an event falls into the infinitesimal intervall [z, z + dz]
falls is given by:

p(z,z + dz) = f(z)dz .

< DISCRETE PROBABILITIES:

Discrete probabilities p; can be written as a PDF using Dirac’s delta-function:

f@)=> pid(z—i) where /dmf(o:) => p=1



l_Hetograms anapos

A histogram is a convenient tool to estimate the PDF f(z) from a set of events drawn from
this parent distribution. A 1-dim histogram is defined through a range [Zmin, Zmax], the
number of bins n, over this range and the number of entries in each bin. With

N : total number of entries in the histogram
h : binwidth
n, :  number of entries in bin [zx — h/2, zx + h/2]

connection to the PDF f(z): salization of a ldim POE

P A R M A N M )
ny = Nxp(z—h/2,z+h/2) 035 E
)2 0.3;
= N dz f(z) i
o —h/2 025
~ Nf(zx)h F
nk: 0.1E
— f(mk) ~ h-N o.os;
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b eectaron vawes N

«» GENERAL DEFINITION:

Expectation values or “Moments” are mappings f(z) — C, from a PDF to a number, by
means of an integral transformation of the PDF with an appropriate weight function w(z):

/ dz f(z) w(z) = (w(z))

(o)

The expectation value is a linear operation:
(a1 - wi(z) + a2 - w2(z)) = ar(wi(z)) + az(w2(z))

Expectation values summarize the property of f(z) by a single number. The term
“expectation value” derives from the fact that for many distributions the expectation value
with the special weight function w(z) = z is a good estimator for the center and

the most likely value of the PDF. Common weight functions include:

w(z) = z" algebraic moments, n =0, 1,2, ...
w(z) = (z— ()" central moments, n =0, 1,2, ...
w(z) e*e Fourier transform, k£ any real number
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A measure s for the scatter of z distributed according to f(z) around a point a is given by

s2=/da: (z — a)® f(z)

To characterize the distribution, a should be chosen such that the scatter is minimal, i.e. as
that point around which the distribution is most concentrated. Miminizing s? yields:

——2/da:(x—a, ) 0 e a,minz/da:xf(w)z(m)

Thus the “mean value” (z) is an estimate for the center of a PDF. For a symmetric
distribution f(a — z) = f(a + ) itis also the symmetry point

(z) = /dmacf /dm (z — a) f(z) + /dzf(a:):0+a,><1:a

The scatter o measured around (z) is also referred to as “standard deviation” or
“rms”-scatter, its square as “variance”. The following relation holds:

- / iz (z — (2)) f(z) = / dz (2% — 20(z) + (2)°) f(2) = (a%) — (a)?




«» DEFINITION AND INTERPRETATION:
A 2-dim PDF is a function f(z, y) > 0 with

/ dz/ dyf(z,y)=1

Given a 2-dim PDF f(z, y), the probability to observe an event inside the (infinitesimal)
rectangle [z, z + dz] x [y, y + dy] becomes

p(z,z + dz;y,y + dy) = f(z, y)dzdy
The histogram technique for estimating the density function discussed for 1-dim PDFs can
equally be applied to higher dimensional cases.

=> Relation between number of entries in a bin and PDF:

flz,y) =

entries in bin _ n
total number of entries x bin size = N dz dy

=» generalization to higher dimensions is straightforward . . .



Simplest form of a 2-dim PDF f(z, y): direct product of two 1-dim PDFs:

fz,y) = g1(z) - 92(y)
z and y are independent or “uncorrelated”, i.e. the PDF of z does not depend on the value
of y. In general there can be correlations, which can be detected by studying the moments

of the distribution. The leading order ones are:
normalization (1)

1st moments (z), (y)
2nd moments (), (zy) , (¥°)

3rdmoments  (z°),(z%y), (zv®) ,(v®)  etc.
The lowerst order term sensitive to correlation is (zy). For uncorrelated variables it is:

<my>:/da: /dym-y-gl(m)-gz(y): (/dm-gl(m)) (/dyy-gz(y)) — (a)(y)

This suggests the following quantity as a measure for correlations:

Coy = (zy) — (2)(¥) ‘covariance” of z and y.
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“» GENERAL CASE OF N-VARIABLES

Set of covariances of all (ordered) pairs of variables (also pairings of a variable with itself):
Cy = (mzy) — (z:)(z)
=¥ discussion:

the diagonal elements of Cy; are the variances of the individual variables
off-diagonal elements are the covariances between all pairs of variables

the covariance matrix is symmetric and positive definite

it can be diagonalized by a rotation in the space of the random variables

covariance matrix Cj; and expectations values (z;) decribe (in leading order)
=?» location,

=¥ extension and

=» orientation of a PDF

0 Cis also referred to as “error matrix”

=» simple and well defined concept to quantify uncertainties

=» probability content of n-o-interval depends on shape of distribution
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b _renstormanon of Coveriance watriees N

«»* LINEAR TRANSFORMATIONS: yx = A T;
given: covariance matrix Cj;(z); wanted: covariance matrix Cr(y)

Cu(y) = (yeyr) — (ye){w)
= ((Auz)(Ayz))) — (Anzi)(Ayz))
= AuAy((zizj) — (z)(z))) = Ar Ay Cy(z)

Matrix notation:
§=A-Z and C(y)=A-C(z)-A".

A not necessarily a square matrix!

% GENERAL (NONLINEAR) TRANSFORMATIONS: Yy = Fy(z1, 22, . .., Tn)

Exact treatment requires knowledge of PDF of Z. Linearization (leading order Taylor
expansion) yields the (for non-linear F; approximate) general solution

6yk 6yl
Cu(y) = 8z, B3, Cy(z)
“Gaussian Error Propagation”



=» general formulation

Given a n-dim PDF f(z1, @2, ..., Z,), find the PDF g(y), with y = h(@1, 22, ..., Z,) When
the z1, @2, . . ., z, are distributed according to fi(z1, z2, ..., Zn).

O obvious to do numerically by Monte Carlo (especially for independent variables)
O formal solution via cumulative distribution G(y) of g(v)

Y
o(y) = / dy 9(v)

G(Y) obtained by summing all probability elements dz; dzz - - - dzy, f(z1, 22, ..., Zn)
which satisfy the boundary condition h(z1, 22,...,2,) < Y, i.e.

G(Y) :/dxl dzp - - dzy fi(z, T2y .o, 20) O(Y — h(z1, 22, ..., 20))
From G(Y), the density g(y) is obtained by differentiation with respect to the upper limit:
o0) = [ oo il 1) 63— o, 22)

general expression for the transformation of PDFs
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=» the “textbook convolution”y = x; +

o(y) = / dzy doafy (22)fo(2)0(y — 21 — 32) = / o fi(2)fo(y — o)
moments of g(y):

(W) = / dy v g(y) = / o dasfy(21)fa(22) (@1 + 22)°

mean value and variance:

(v) = / s daafy (22)fo(22) (1 + 22) = {@2) + (22)
W) — () = [ / o dasfy (@) o 22) (1 + wz)z] ) + (@)

= [(@) + 2z ) () + (23)] — [(:)? + 2(z1)(z2) + (22)°]

= [(af) — (@)?] + [(25) — (22)”]
Mean values and variances always add up under the convolution y = z; + z»!



l_me Centrtimit meorem I

«» ADDITIVE CONVOLUTION OF MANY RANDOM VARIABLES

For PDFs f;(z;), %7 = 1,..., n with mean values u; = 0 and finite variances o2, consider
n n
1 .
yzgg z  with Szzg ol .
1=1 i=1

By construction one has (y) = 0 and (y?) = 1. In the limit n — co the PDF for y
converges to the “normal” or “gaussian” distribution

1 —_——
e 2
Var
independent of the shape of the functions f;(z;). The generalization to arbitrary mean
value u and variance o2 is given by:

9(y) = N(0,1) =

. (y—w)?
g(y)zN(u,a)Zame 202




b _nstcon of e Cenn imit mearem SN

=» convergence towards a gaussian

O generate n random numbers z; from two types of parent distributions
= uniform random numbers in [—0.5,0.5]: ¢ = 1/4/12 and S? = n/12
=» exponential random numbers [—1,0]: 0 = 1and S*> = n
O calculate
> y= \/mzl ; for the uniform random numbers
> y= \/1/_7121 z; for the exponential random numbers
O histogram y-values

test of

mit theorem

the central li

A simple example how to do
convolutions numerically . . .
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Il 3. POINT EsTiM

=» disentangle true value(s) and measurement effects
% SECONDARY SCHOOL EXAMPLE

In a grocery store, a box containing 12 apples and 18 oranges costs 15.60 EUR, another
box with 20 apples and 10 oranges costs 14.00 EUR. What is the price per item?

=» answer: solve the following system of equations

12 18 ) aa _ 15.6
20 10 ao | 14.0

=» complication: the shop assistant lost his pocket calculator

O 5 boxes need to be labelled with a price tag
O the shop assistent is not very good with numbers...
=» actual prices scatter around their nominal values
O what can be learned about the price per item
=¥ if the scatter of the prices is known
=¥ if the scatter of the prices is NOT known

...will come back to this problem later. . .



b _osentenging verances LN

*» PHYSICS EXAMPLE
The natural width o of a spectral line shall be determined. The spectrometer has a known
resolution o, the measured width of the line is o.

=> solution

=¥ discussion
O removal of noise from measurement
O exploit that variances add when PDFs are convoluted
@O knowledge of o and o only approximate
O unstable results if ¢ ~ o
=» extract upper limit for og



b _me et averoge

=¥ noise reduction from measurements

Given n measurements z;, i = 1, ... n which all scatter with the same variance o? = o
around a common value u, an estimate f for u is the arithmetic average:

n
ﬂz%Zax
=1

expectation value:

<ﬂ>=<% %>=%Z(%)=%Z#=u

variance:

3

N B\ 2 1 — o2
B =3 (g) ==
L 1=1

O the arithmetic average is unbiased
O the precision increases with 1/4/n
O the PDF of  converges towards a gaussian
=* independent of the PDF of the z; (central limit theorem)!
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I _me weigniea average AL

=¥ optimal averaging
Given n measurements x;, i = 1, ... n which scatter with the known variances o around
a common value u, find an optimal estimate / for p.

«» ANSATZ: LINEAR COMBINATION WITH MINIMAL VARIANCE

expectation value:

(B = <waz> Zzwi(wi)=zwm=#zwié#

variance:
n aﬂ 2 n \
2(3) = ) o2 = 262 = mi
U(M)_Z(Gmi) Uz_Zw,al_mm
1=1 1=1
solution: minimize variance subject to the constraint ) w; = 1

u=%;% + LS with  §=>"

%

Q-



||||,,__” The x2-Functio N

=» generalization of the previous discussion

O averaging applies if each measurement estimates the parameter one is interested in
O In general a measurement y = f(z; a) will be a function of unknown “physics”
parameters a and control parameters z, e.g.:
=> y = ao + a1z (“straight line fit”)
2 y=ao+ aiz + axz? (“fit of a parabola”)
=* y = asza + aozo (“apples and oranges”)
B actual measurements y; scatter with variances o2 around the true values
O for functions f(z, a), linear in a one can construct unbiased estimators for a from
linear combination of the measurements
B for known variances o2 the optimal linear combination is conveniently expressed as
the minimum of a quadratic function, the x2-function:

2 = (v — f@;a))? x| _
X _Z o2 2 da a—O

=1 v a=

(reproduces all the previous results)
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O the Least Squares Method is a distribution-free way for parameter estimates

O input knowledge only variances (covariance matrix) of the data
=¥» variances must not be correlated with measurements!
O constructed for linear models, generalizes easily to non-linear case
=» properties of linear case approximately apply
unbiased parameter estimates & for linear models

estimates are linear combinations with minimum variance

a=W-y and C(a)=W- -C(y)-W"
for linear models: W = W (z), i.e. only a function of control parameters
PDF of a approximately gaussian (central limit theorem)

(sznin) = Naata — Npar = Nys

special case of equal size measurement errors o; = o

=» identical parameter estimates when setting o = 1 (unweighted fit)

= 0 can be estimated from the condition x2;, = Ny

=» estimate of parameter errors also in case of unknown measurement errors
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=» uncorrelated measurements

n

2
v —wz
X=y (y’a‘;—g“) = Sy + 281 + a2 S — 2008, — 2a1 Sy + 20001 S,
1

=1

~ {1, =, 27, mys, v, ¥}
with S{l,z,m,zy,y,yy}zz s e

— g
Minimization:
ox* _ _ ax* _ _
E —2(0051—Sy+a1$z)—0 and a—al —2(a15u Szy+a.oSz)—0
and thus

S1 S ao \ [ Sy .
<Sa: sm><a1>_(s,y> or more compact M -4 =g

Results (after some algebra):
a=M1'-g and Ca)=M"

Since S, und Sy are linear in the measurements y; also the estimates a are linear
combinations of the y;. The covariance matrix is only a function of the o; and z;.



b tumetcorexampre L

=¥ straight line fit

O straightliney =1+ z,ie. a0 = a1 =1
B 20 equidistant pointsin 0 < z < 2
O fluctuate each measurement with o = 0.1 around its expectation value, using a
=» gaussian
=» exponential distribution
=¥ distribution with two maxima
=¥ uniform distribution

« NOTE:
A least squares fit only uses the measurements and their errors. The PDF of the

fluctuations does not enter. It follows that the covariance matrix of the fits is identical
for all of the above cases.

0.002004 —0.001504 = 0.044763
C(a) = ( ) o(ao) p = —0.866296

—0.001504 0.001504 o(a1) = 0.038778

=> verify ...



I||||.._,, Numerical Te

measurements
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||||,,__” Numerical Tests - co

measurements
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b _erercse: e crocerystore S

=¥ the shop assistant’s price tags

number of apples | number of oranges | price of the box/EUR
12 18 15.6
20 10 14.0
8 22 16.0
10 20 15.4
15 15 16.0

«* PERFORM A LEAST-SQUARES ANALYSIS AND EXTRACT. ..

O an estimate for the price per apple and the price per orange
O uncertainties for those estimates
O an estimate for the scatter of the price tags around their proper values



% SETTING THE STAGE

The distribution b(y) of observable y is measured with an imperfect detector having
inefficiencies, systematic shifts and finite resolution. It is described by a “response function”
g(z, y), the distribution of the measured z for every y. Alternative names for g(z, y):

O response function (experimental physicists)

O point-spread function (astronomer)

@ green’s function (theorist)

O kernel (mathematician)

=» relation between b(y) and observable distribution a(z):

alz) = / ™ 4y o2, v) b(y)

Ymin
=¥ the unfolding problem:
% CONSTRUCT AN ESTIMATE FOR b(y) GIVEN

1= (estimate of) the response function g(z, y)
= g sample of n events drawn according to a(z)



||||,,__” Discretization N

O In case a parametric model b(y; a) with a small number of parameters a exists,
unfolding can be done by extracting the parametes with e.g. a least squares fit.
O In practical applications the density a(z) is sampled with a finite number of
measurements z;, ¢t = 1,...,n.
=¥ the available information is finite
=» atruly model-independent unfolding of b(y) with continuous vy is impossible
=» resort to a flexible description of b(y) with a sufficiently large number of
parameters. The problem has to be discretized.

=» expansion of PDFs into base-functions o (z) and 8;(y)
Ng ny
a(z) =) mox(z) and b(y) =) biBi(y)
k=1 =1
O for example . ..

=» harmonic functions (=» Fourier-components)

=» orthogonal polynomial

=» histogram bins (0th order splines, orthogonal)

=» B-splines (not orthogonal)



O simple intuitive interpretation for coefficients ax and b;
@ no assumptions about smoothness or curvature of distributions
O sufficiently large number of bins required for b(y) to limit quantization errors

=» base functions:
o1 <z < T

- l/(:l:k — .’13/971) if

a(z) = { 0 else

oy ) Y(wi—yie) iy <y<w
Bi(v) = { 0 else

=» discretized Distributions:
Tp Yi
ax :/ dz a(z) and b; :/ dy b(y)
Tp—1 Yi—1

=» response matrix:
1 T Yi
Gm:%/ dl’/ dy g(z,y)
Vi~ Y1 Tp—1 Yi—1

=¥ unfolding problem reduced to linear algebra:
a=G-b
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||||,,__” Toy Models for
=» PDFs of true distributions on the intervall0 < y <1

O two Breit-Wigner peaks on a smooth background
bi(y) = 20.334 i 2.0334 n 4.0668
100 + (10y — 2)2 1+ (10y —4)? 4+ (20y — 15)
O two narrow gaussian peaks
b2(y) = 5.31923 exp (—200(y — 0.35)*) + 2.659615 exp (—200(y — 0.65)?)

O step function

2 for 0.25 <y <0.75
ba(y) = 0 else

=» parametrization of the response function

o) = i eep (< (o= [y-0)7) - (1= (o 1))

O gaussian resolution function (parameter o)
O quadratic bias as a function of y (parameter 3)
O parabolic shape of efficiency loss twoards phase space limits (parameter «)
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Il mustration

X true distribution observable distribution
% SHOWS PO i B A R R b IPTY = R L R R A
O properties of different models 2 E
@ action of response function 3 E
O effect of finite statistics osE- E
oblnt e d Rl N1
0 02 04 06 08 1 0 02 04 06 08 1
true distribution response matrix response function
SRRRRRRRRY - uivowms cricy Y o Rl AR RS neaRnnnppc | PRNEY o A B
1200 |- E E 35 gE E
1000 - 4 osf 03 ;E E
- 1 of 0 SE :
600 - 4 oef os 4F \ E
a0 |- 4 o o1 3E \ E
202;\”‘\”‘\”‘\”‘\‘”\2 B e P I I 2'05 oE e \\}\A (S T
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ST ET T s « IN THE FOLLOWING
E 9 w0 .
E 4 mf O take response matrix to be exact,
f E = i.e. no quantization errors
1 wf O focus on the effect of finite statistics
TN N ERTIIN RN AT A -
0 02 04 06 08 1 0 02 0a 06 08 1 on unfolding methods
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O parameter settings for the response function

by) | 0 a B
Problem 1 | bi(y) | 1/20 1/2 1/10
Problem 2 | b2(y) | 1/12 O 0
Problem 3 | bs(y) | 1/8 0 0

O histogram diskretisation with equidistant binning
=» restrict true and observed distribution to the range z, y € [0, 1]
=» n, bins for the observed distribution a(z)
=» ny bins for the true distribution b(y)
=» statistical precision of N measurements, relative errors proportional to 1/ VN
O relation between observable and true distribution
(ay=G-b
O actual measurements fluctuate around expectation values
a=(a)+r
=» with statistics fluctuation r around zero, i.e. (r) =0
=» relative size of fluctuations according to assumed statistics
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Il mustration

true distribution

response matrix

RRRRNREARNRRRRN RE:

AR WRARR

Lo b b by 1
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0 \H‘HH‘HH‘HH‘HH‘HH‘\H\‘HH‘HH‘HHE 0.(])- Fri¥d NYEY PNUTE FETTY AYUTY INTU1 AYRTY AT
0 0102030405060.70809 1 0 0102030405060.70809 1
observable distribution Obsarved OPserved
25 _\\\\\\\\\_ﬁ 190 [T
2F 4 wo
1.5; é 8
f E I
I E
0sf 1 »
bbbl b b bl L 79 0 bbb b b b b

0 0102030405060.7 0.80.9

1

0 010203040506070809 1

=» performance of different unfolding methods. . .
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b _8roy-ain conecton ractos S

=» simplest and most widely used method

O same binning for observed and true distribution
O bin-dependent correction factors cx

bk = Qg * Ck
O determination of the correction factors
=» start with assumption for by
=» determina ax by folding (multiplication) with response matrix
=» calculate ¢, = bi/ax
— bk
202, Gubi
O Correction factors depend on the assumed distribution by. Possible choices:
=» (approximate/expecetd) true distribution (unknown)
=» uniform distribution (“objectiv”)
=» measured distribution (hopefully similar to truth .. .)
@ correct result is garanteed only for b, = bi™e
O in general a partial correction should be achievable

Ck
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«*» GET INDEPENDENT OF SPECIFIC ASSUMPTION FOR by
=¥ choose initial setting: (for example)

b,go) = Qk
=) iteration:

B D _ g ) b
I L.
2 lebl(n)

error estimate for the unfolded distribution:
o(by) = cx-o(ax) correctfor C(Z) =0

=¥ application to test-problems:

unfolded PDF

LA L LL LA LA LAL LARA R LR LR apae AL LALL LAL L L L L L L Ll
1200 F E 25 F E
1000 = E E
E ] 2F =

800 |- - o E
o ] 15F =

600 [~ = = 7
a0 E E
200 |- E :
0TH\‘\H\‘H\\‘HH‘HH‘HH‘HH‘HH‘HH " 0;H\‘HH‘HH‘HH‘HH‘HH‘HH‘HH‘HH‘H\;

0 010203040506070809 1 0 010203040506070809 1
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b oseuson

O correction factors work well if the true distribution is known

=» no iteration required
=» stable result
=» no new information from measurement
@O conceptual problems
=> empty bins are corrected to zero
=» data from outside physics phase space are ignored
O first iteration step depends on assumed true distribution
O iteration removes dependence on unknown distribution, but . . .
=¥ results are unstable
=¥ naive error propagation evidently wrong
=¥ analytic error calculation not feasible: the iterated result is a highly non-linear
function of the measurements

=¥ do it properly. ..



b _mprovea conecton ractos N

O fluctuate measurements @ according to their error
=» generate N pseudo-samples @, withn =1,..., N

O for each pseudo-Sample @, determine bn using M -times iterated correction factors
O take average unfolded distribution as nominal result

1 N
=32 b
n=1
O estimate errors by the empirical covariance matrix of the results

c(b) = ( an-n>— b-87

=¥» correlations between bins of the unfolded distribution handled properly
O numerical studies show

=» surprisingly large error in the unfolded distribution

=» strong correlations between neighboring bins

=¥ errors grow with the number M of iterations



||||,,__” Numerical Test

unfolded PDF
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consider alternative methods. ..



b _8oyesan uoang

=» Unfolding based on conditional probabilities
introduce discrete probabilities p; for the true distribution:

ny ny
b,=B-p;, and q; = Z G by = BZ Git Pk
k=1 k=1
Interpretation of the response matrix G as conditional probabilities
Gir = p(measurement t|true value k)

exploit Bayes’ theorem to construct an unfolding matrix Hy:

Hy, = p(true value k|measurement 7)

p(measurement t|true value k) - p(true value k)
p(measurement %)
p(measurement i|true value k) - p(true value k) Gik - Dk

2, p(measurement iftrue value 5) - p(true value j) B >, Gypj

O Hy depends on the unknown distribution by
O Hix corrects smearing, no correction for inefficiencies

application =¥
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b _Aoping the unoiang mamx NS

=» bayesian unfolding

O determination of unfolded distribution
=¥» use the unfolding matrix to correct for smearing
=¥ then correct efficiencies as described by the response matrix
=» if necessary determine the normalization

O synopsis

Ng Mg
1 ) .
g = — E a; - Hij with € = E Gy and pj = —n%]
Rt o1 Doty @

O naive error propagation for g;

— O0q; Og; 1 - -
Bax 5 H(8) = gy 2 By Cu(a)

k,l=1 k,l=1

Cy(q) =

=» correlated errors due to unfolding matrix
=» otherwise similar dependence on measurements as bin-by-bin corrections



b oscuson

«» CHARAKTERISTICS OF BAYESIAN UNFOLDING

mathematically sound aproach

explicitly use positvity of probabilities

can move measurements from unphysical region into allowed phase space
no matrix inversion required

=» unfolding works also for non-square matrices G

=¥ if needed the normalization B of b; = Bp; is obtained from

ZB ZGik'pk:Zai
i k i

same problem with initial values as correction factors

iteration makes H independent of initial values p;

error Monte Carlo is the method of choise to . . .

=» reliably determinate the covariance matrix of the unfolded distribution
=¥ stabilize the result against statistical fluctuations in the measurements

=» test the method. . .



||||,,__” Numerical Tests

observed unfolded PDF
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O slow convergence (if at all?) with the number of iterations
B number of iterations correlates structure in covariance matrix and size of errors
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=» observation
O too few iterations: result strongly correlated with initial values
O too many iterations:result becomes unstable

«*» CONCEPTAL APPROACH
The number of iteration can be chosen freely. Consequences of a particular choice can be
quantified by means of the covariance matrix of the result. Schematically one has for the
case of a square response matrix:
b =H-a=H-(G-G ") -a=(H-G)" birue
The unfolded distribution is a linear function of the measurements. The connection with the
true distribution is given by a residual response matrix Gres:
Gres = (H - G)
O H = G ! corresponds to full correction
O H # G implies residual distortions

=» the unfolding procedure did achieve a partial correction
=» improvement of resolution instead of full correction



Il Unfolding by Mat

=» restricted to the case n, = ny

a=G-b F b=G '-a with C(b)=CG'C(a)(GHT

unfolded PDF
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diagonalize the unfolding problem to understand the strange behaviour . . .
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||||,,__” Analyses of the

% REMINDER: SVD FOR ANY MATRIX A[m, n] (m > n)
Alm,n] = Ulm,n]- W[n,n]- Vin,n]”
with 07 U=vT.v=v.-vT=1, and positive definite diagonal matrix W

=» diagonalization of the unfolding problem

O transform measurements z = M - a such that C(z) =1
O the unfolding problemnowreadsz =M -a =M - G- b
O apply singular value decomposition (SVD) to new response matrix M - G
t=M-G-b=U-W-VT.b or UTz=w-V".p
O introduce “normalized moments” u and v
v=VT"b and u=UT-2=U"-M-a with C(u)=U"-C(z)- U=1
which diagonalize the unfolding problem
u=W- v
=» asimple rotation now relates v to the unfolded distribution b
=» the diagonal correction factors (“unfolding weights”) are 1/ Wi



||||,,__” Numerical St

- compare
O normalized moments for measurements and correction factors
O expectation for uniform unfolded distribution

observed normal moments
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b e

=¥ diagonalization of the unfolding problem shows:

The higher order moments u; are exponentially suppressed by the response matrix. To
measure them requires extrem large statistical precision. Accepting those components for
the unfolding means exponential amplification of statistical fluctations.

“ NOTE:
The higher order moments describe fine structur of b(y). Using
b=V-v
the eigen-functions (eigen-vectors) for the individual components v; can be read off from
the columns of V. Those
O eigenvectors are orthogonal
O the number of sign-changes grows with increasing order
O the highest order vector
=» has alternating signs
=» has the largest correction factors
=» dominates the matrix-inversion result
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||||,,__” Regularization

unfolding requires ny measurements ux
the effective number of measurements with information about b(y) is smaller
heuristic ansatz to count the effective number of measurements
=» compare measured values of normalized moments u; with
expectation %;, from a (e.g. flat) prior distribution
=» count only those which are significantly different from the prior expectation
O Regularisation:
=¥ take those normalized moments from data which differ significanttly from the prior
=¥ take the others from the prior
=» construct the unfolded distribution

=¥ in general: replace missing information by assumptions

O many possibilities to add information
=» pure heuristics
=» assumption about smoothness or curvature of the result
=» information theoretical approaches (Maximum Entropy)
O many possibilities where to put the cut on the measurements
=» ... “adjustment of the regularization parameter”
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||||,,__” Numerical Exa
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b oseuson

O significantly “better” results than straightforward matrix inversion
O almost perfect unfolding of smooth structures
O difficulties with discontinuities

«» EXPLANANATION:
Describe regularization by a diagonal matrix R applied to the normalized moments:

b=V- W' R u=(V-R- W u

=(V-RWhH-UT - M-a

=V-R-(VI. V). w ' UT - M-a
=(V-RVH(Vv.w*' U M-a
=(V-R-VD)-(M-G)"'M-a

=(V-R- VD) .G ' a=GCre-b(R=1) with Gree=(V-R-VT)

The regularized result is equivalent to a smearing of the exaxt result! If the residual
smearing Gy.s has a resolution better than typical structures in the true distribution the
result appears undistorted. Regularization replaces complete unfolding by improvement of
the resolution function.



Il summary N

=¥ analysis of the response matrix has shown
O unfolding problem often are effectively under-constrained
O the response matrix is “ill conditioned”, i.e. the spectrum of the eigenvalues (singular
values) varies over many orders of magnitude.
O matrix inversion or a least squares fit of bin contents usually unsatisfactory
O regularisation is a possible solution
=» suppress the not well measured components by some prior information
O effects of regularization
=» often acceptable unfolding results
=» residual smearing in the unfolded distribution
=» bias in normalized moments
X negligible bias with respect to the measured distribution
X unknown bias in the unfolding result
=» trade statistical errors against resolution
O bias can be controlled through the structure of the residual response matrix or the
correlation lengths seen in the covariance matrix of the unfolded distribution.
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