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1. INTRODUCTION

Data

Measurement

Analysis

Physics

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

...
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2. BASICS

DISCLAIMER

Ü do not start from scratch - assume: : :

intuitive understanding of probability
familiarity with statistical fluctuations and measurement noise
basic math
Ü calculus
Ü linear algebra
Ü Dirac’s delta-function
Ü Einstein’s convention to sum over repeated indices
some knowledge about expectation value
experience with fitting
: : :

some of the above will be repeated in the following: : :

hopefully from a new and interesting angle: : :
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Probability Density Functions

v DEFINITION:

A function f (x ) is a “Probability Density Functions” (PDF) if

f (x ) � 0 8 x and

Z +1

�1

dx f (x ) = 1 :

v INTERPRETATION OF f (x ):
The probability p(x ; x + dx ) that an event falls into the infinitesimal intervall [x ; x + dx ]
falls is given by:

p(x ; x + dx ) = f (x )dx :

v DISCRETE PROBABILITIES:

Discrete probabilities pi can be written as a PDF using Dirac’s delta-function:

f (x ) =
nX

i=1

pi �(x � i) where

Z
dx f (x ) =

X
i

pi = 1
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Histograms and PDFs

A histogram is a convenient tool to estimate the PDF f (x ) from a set of events drawn from
this parent distribution. A 1-dim histogram is defined through a range [xmin; xmax], the
number of bins nx over this range and the number of entries in each bin. With

N : total number of entries in the histogram

h : bin width

nk : number of entries in bin [xk � h=2; xk + h=2]

connection to the PDF f (x ):

nk = N � p(x � h=2; x + h=2)

= N
Z xk+h=2

xk�h=2
dx f (x )

� Nf (xk ) h

=) f (xk ) � nk

h �N
1 rootx1.cmd
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Expectation Values

v GENERAL DEFINITION:
Expectation values or “Moments” are mappings f (x ) 7! C , from a PDF to a number, by
means of an integral transformation of the PDF with an appropriate weight function w(x ):Z 1

�1

dx f (x )w(x ) = hw(x )i

The expectation value is a linear operation:

ha1 � w1(x ) + a2 � w2(x )i = a1hw1(x )i+ a2hw2(x )i
Expectation values summarize the property of f (x ) by a single number. The term
“expectation value” derives from the fact that for many distributions the expectation value
with the special weight function w(x ) = x is a good estimator for the center and
the most likely value of the PDF. Common weight functions include:

w(x ) = x n algebraic moments;n = 0; 1; 2; : : :
w(x ) = (x � hx i)n central moments;n = 0; 1; 2; : : :
w(x ) = e ikx Fourier transform; k any real number
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Mean Value, Standard Deviation, Variance

A measure s for the scatter of x distributed according to f (x ) around a point a is given by

s2 =

Z
dx (x � a)2 f (x )

To characterize the distribution, a should be chosen such that the scatter is minimal, i.e. as
that point around which the distribution is most concentrated. Miminizing s2 yields:

@s2

@a
= �2

Z
dx (x � a)f (x ) !

= 0 i.e. amin =

Z
dx x f (x ) = hx i

Thus the “mean value” hx i is an estimate for the center of a PDF. For a symmetric
distribution f (a � x ) = f (a + x ) it is also the symmetry point

hx i =
Z

dx x f (x ) =
Z

dx (x � a) f (x ) + a
Z

dx f (x ) = 0 + a � 1 = a

The scatter � measured around hx i is also referred to as “standard deviation” or
“rms”-scatter, its square as “variance”. The following relation holds:

�2 =

Z
dx (x � hx i)2 f (x ) =

Z
dx (x 2 � 2x hx i+ hx i2) f (x ) = hx 2i � hx i2
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2-dimensional Distributions

v DEFINITION AND INTERPRETATION:
A 2-dim PDF is a function f (x ; y) � 0 withZ 1

�1

dx
Z 1

�1

dy f (x ; y) = 1

Given a 2-dim PDF f (x ; y), the probability to observe an event inside the (infinitesimal)

rectangle [x ; x + dx ]� [y ; y + dy ] becomes

p(x ; x + dx ; y ; y + dy) = f (x ; y)dxdy

The histogram technique for estimating the density function discussed for 1-dim PDFs can

equally be applied to higher dimensional cases.

Ü Relation between number of entries in a bin and PDF:

f (x ; y) � entries in bin
total number of entries� bin size

=
n

N dx dy

Ü generalization to higher dimensions is straightforward : : :
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Correlations and Covariance

Simplest form of a 2-dim PDF f (x ; y): direct product of two 1-dim PDFs:

f (x ; y) = g1(x ) � g2(y)

x and y are independent or “uncorrelated”, i.e. the PDF of x does not depend on the value

of y . In general there can be correlations, which can be detected by studying the moments

of the distribution. The leading order ones are:
normalization h1i
1st moments hx i ; hyi

2nd moments hx 2i ; hxyi ; hy2i
3rd moments hx 3i ; hx 2yi ; hxy2i ; hy3i etc.

The lowerst order term sensitive to correlation is hxyi. For uncorrelated variables it is:

hxyi =
Z

dx
Z

dy x �y �g1(x )�g2(y) =

�Z
dx x � g1(x )

��Z
dy y � g2(y)

�
= hx ihyi

This suggests the following quantity as a measure for correlations:

Cxy = hxyi � hx ihyi “covariance” of x and y .
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The Covariance Matrix

v GENERAL CASE OF N -VARIABLES

Set of covariances of all (ordered) pairs of variables (also pairings of a variable with itself):

Cij = hxixj i � hxi ihxj i

Ü discussion:
the diagonal elements of Cij are the variances of the individual variables

off-diagonal elements are the covariances between all pairs of variables

the covariance matrix is symmetric and positive definite

it can be diagonalized by a rotation in the space of the random variables

covariance matrix Cij and expectations values hxi i decribe (in leading order)

Ü location,

Ü extension and

Ü orientation of a PDF

C is also referred to as “error matrix”

Ü simple and well defined concept to quantify uncertainties

Ü probability content of n -�-interval depends on shape of distribution
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Transformation of Covariance Matrices

v LINEAR TRANSFORMATIONS: yk = Akixi

given: covariance matrix Cij (x ); wanted: covariance matrix Ckl(y)

Ckl(y) = hykyli � hyk ihyli
= h(Akixi )(Alj xj )i � hAkixi ihAlj xj i
= AkiAlj (hxixj i � hxi ihxj i) = AkiAljCij (x )

Matrix notation:

~y = A � ~x and C (y) = A �C (x ) �AT :

A not necessarily a square matrix!

v GENERAL (NONLINEAR) TRANSFORMATIONS: yk = Fk (x1; x2; : : : ; xn)

Exact treatment requires knowledge of PDF of ~x . Linearization (leading order Taylor
expansion) yields the (for non-linear Fk approximate) general solution

Ckl(y) =
@yk

@xi

@yl

@xj
Cij (x )

“Gaussian Error Propagation”
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Convolutions

Ü general formulation
Given a n -dim PDF f (x1; x2; : : : ; xn), find the PDF g(y), with y = h(x1; x2; : : : ; xn) when
the x1; x2; : : : ; xn are distributed according to fi (x1; x2; : : : ; xn).

obvious to do numerically by Monte Carlo (especially for independent variables)
formal solution via cumulative distribution G(y) of g(y)

G(Y ) =

Z Y

�1

dy g(y)

G(Y ) obtained by summing all probability elements dx1 dx2 � � � dxn f (x1; x2; : : : ; xn)

which satisfy the boundary condition h(x1; x2; : : : ; xn) < Y , i.e.

G(Y ) =

Z
dx1 dx2 � � � dxn f1(x1; x2; : : : ; xn) �(Y � h(x1; x2; : : : ; xn))

From G(Y ), the density g(y) is obtained by differentiation with respect to the upper limit:

g(y) =
Z

dx1 dx2 � � � dxn f1(x1; x2; : : : ; xn) �(y � h(x1; x2; : : : ; xn))

general expression for the transformation of PDFs
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Sums of Independent Random Variables

Ü the “textbook convolution” y = x1 + x2

g(y) =
Z

dx1 dx2f1(x1)f2(x2)�(y � x1 � x2) =

Z
dx1 f1(x1)f2(y � x1)

moments of g(y):

hyk i =
Z

dy yk g(y) =
Z

dx1 dx2f1(x1)f2(x2)(x1 + x2)
k

mean value and variance:

hyi =
Z

dx1dx2f1(x1)f2(x2)(x1 + x2) = hx1i+ hx2i

hy2i � hyi2 =

�Z
dx1dx2f1(x1)f2(x2)(x1 + x2)

2
�
� [hx1i+ hx2i]2

=
�
hx 2

1 i+ 2hx1ihx2i+ hx 2
2 i
�
�
�
hx1i2 + 2hx1ihx2i+ hx2i2

�
=
�
hx 2

1 i � hx1i2
�
+
�
hx 2

2 i � hx2i2
�

Mean values and variances always add up under the convolution y = x1 + x2!
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The Central Limit Theorem

v ADDITIVE CONVOLUTION OF MANY RANDOM VARIABLES

For PDFs fi (xi ); i = 1; : : : ;n with mean values �i = 0 and finite variances �2
i , consider

y =
1
S

nX
i=1

xi with S2 =

nX
i=1

�2
i :

By construction one has hyi = 0 and hy2i = 1. In the limit n !1 the PDF for y
converges to the “normal” or “gaussian” distribution

g(y) = N (0; 1) =
1p
2�

e
�y2

2

independent of the shape of the functions fi (xi ). The generalization to arbitrary mean

value � and variance �2 is given by:

g(y) = N (�; �) =
1

�
p

2�
e
� (y � �)2

2�2
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Illustration of the Central Limit Theorem

Ü convergence towards a gaussian

generate n random numbers xi from two types of parent distributions

Ü uniform random numbers in [�0:5; 0:5]: � = 1=
p

12 and S2 = n=12
Ü exponential random numbers [�1;1]: � = 1 and S2 = n
calculate

Ü y =
p

12=n
P

i xi for the uniform random numbers

Ü y =
p

1=n
P

i xi for the exponential random numbers

histogram y -values

rootx2.cmd

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05
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0.35

0.4

test of the central limit theorem

A simple example how to do
convolutions numerically : : :
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3. POINT ESTIMATES

Ü disentangle true value(s) and measurement effects
v SECONDARY SCHOOL EXAMPLE

In a grocery store, a box containing 12 apples and 18 oranges costs 15.60 EUR, another
box with 20 apples and 10 oranges costs 14.00 EUR. What is the price per item?

Ü answer: solve the following system of equations�
12 18
20 10

�
�
�

aA

aO

�
=

�
15:6
14:0

�

Ü complication: the shop assistant lost his pocket calculator

5 boxes need to be labelled with a price tag
the shop assistent is not very good with numbers...
Ü actual prices scatter around their nominal values
what can be learned about the price per item
Ü if the scatter of the prices is known
Ü if the scatter of the prices is NOT known

: : :will come back to this problem later: : :
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Disentangling Variances

v PHYSICS EXAMPLE

The natural width �0 of a spectral line shall be determined. The spectrometer has a known

resolution �s , the measured width of the line is �.

Ü solution

�0 =
q

�2 � �2
s

Ü discussion

removal of noise from measurement

exploit that variances add when PDFs are convoluted

knowledge of � and �s only approximate

unstable results if � � �s

Ü extract upper limit for �0
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The Arithmetic Average

Ü noise reduction from measurements
Given n measurements xi ; i = 1; : : :n which all scatter with the same variance �2

i = �2

around a common value �, an estimate �̂ for � is the arithmetic average:

�̂ =
1
n

nX
i=1

xi

expectation value:

h�̂i =
*

1
n

nX
i=1

xi

+
=

1
n

nX
i=1

hxi i = 1
n

nX
i=1

� = �

variance:

�2(�̂) =

nX
i=1

�
@�̂

@xi

�2

� �2
i =

1
n2

nX
i=1

�2
i =

�2

n

the arithmetic average is unbiased
the precision increases with 1=

p
n

the PDF of �̂ converges towards a gaussian
Ü independent of the PDF of the xi (central limit theorem)!
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The Weighted Average

Ü optimal averaging
Given n measurements xi ; i = 1; : : :n which scatter with the known variances �2

i around
a common value �, find an optimal estimate �̂ for �.

v ANSATZ: LINEAR COMBINATION WITH MINIMAL VARIANCE

expectation value:

h�̂i =
*

nX
i=1

wixi

+
=

nX
i=1

wi hxi i =
nX

i=1

wi� = �

nX
i=1

wi
!
= �

variance:

�2(�̂) =

nX
i=1

�
@�̂

@xi

�2

� �2
i =

nX
i=1

w2
i �

2
i

!
= min

solution: minimize variance subject to the constraint
P

wi = 1

�̂ =
1
S

nX
i=1

xi

�2
i
� 1p

S
with S =

X
i

1
�2

i
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The �2-Function

Ü generalization of the previous discussion
averaging applies if each measurement estimates the parameter one is interested in

In general a measurement y = f (x ; a) will be a function of unknown “physics”
parameters a and control parameters x , e.g.:

Ü y = a0 + a1x (“straight line fit”)

Ü y = a0 + a1x + a2x 2 (“fit of a parabola”)

Ü y = aAxA + aOxO (“apples and oranges”)

actual measurements yi scatter with variances �2
i around the true values

for functions f (x ; a), linear in a one can construct unbiased estimators for a from
linear combination of the measurements

for known variances �2
i the optimal linear combination is conveniently expressed as

the minimum of a quadratic function, the �2-function:

�2 =

nX
i=1

(yi � f (xi ; a))2

�2
i

Ü
@�2

@a

����
a=â

= 0

(reproduces all the previous results)
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Properties of the Least Squares Method

the Least Squares Method is a distribution-free way for parameter estimates

input knowledge only variances (covariance matrix) of the data

Ü variances must not be correlated with measurements!

constructed for linear models, generalizes easily to non-linear case

Ü properties of linear case approximately apply

unbiased parameter estimates â for linear models

estimates are linear combinations with minimum variance
â = W � y and C (â) = W �C (y) �W T

for linear models: W = W (x ), i.e. only a function of control parameters

PDF of â approximately gaussian (central limit theorem)

h�2
mini = Ndata � npar = Ndf

special case of equal size measurement errors �i = �

Ü identical parameter estimates when setting � = 1 (unweighted fit)

Ü � can be estimated from the condition �2
min = Ndf

Ü estimate of parameter errors also in case of unknown measurement errors
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Application: Straight Line Fit

Ü uncorrelated measurements

�2 =

nX
i=1

(yi � a0 � a1xi )
2

�2
i

= Syy + a2
0S1 + a2

1Sxx � 2a0Sy � 2a1Sxy + 2a0a1Sx

with Sf1; x ; xx ; xy; y; yyg =
nX

i=1

f1; xi ; x 2
i ; xiyi ; yi ; y2

i g
�2

i

Minimization:

@�2

@a0
= 2(a0S1 � Sy + a1Sx ) = 0 and

@�2

@a1
= 2(a1Sxx � Sxy + a0Sx ) = 0

and thus �
S1 Sx

Sx Sxx

��
â0

â1

�
=

�
Sy

Sxy

�
or more compact M � â = g

Results (after some algebra):

â = M�1 � g and C (â) = M�1

Since Sy und Sxy are linear in the measurements yi also the estimates â are linear
combinations of the yi . The covariance matrix is only a function of the �i and xi .
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Numerical example

Ü straight line fit
straight line y = 1 + x , i.e. a0 = a1 = 1
20 equidistant points in 0 < x < 2
fluctuate each measurement with � = 0:1 around its expectation value, using a
Ü gaussian
Ü exponential distribution
Ü distribution with two maxima
Ü uniform distribution

v NOTE:
A least squares fit only uses the measurements and their errors. The PDF of the
fluctuations does not enter. It follows that the covariance matrix of the fits is identical
for all of the above cases.

C (a) =

�
0:002004 �0:001504

�0:001504 0:001504

�
�(a0) = 0:044763
�(a1) = 0:038778

� = �0:866296

Ü verify : : :
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Numerical Tests - central values

0 rootx3.cmd

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Numerical Tests - correlations and �2

1 rootx4.cmd

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Mean          18
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Exercise: the Grocery Store

Ü the shop assistant’s price tags

number of apples number of oranges price of the box/EUR
12 18 15.6
20 10 14.0
8 22 16.0
10 20 15.4
15 15 16.0

v PERFORM A LEAST-SQUARES ANALYSIS AND EXTRACT: : :

an estimate for the price per apple and the price per orange
uncertainties for those estimates
an estimate for the scatter of the price tags around their proper values
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4. UNFOLDING

v SETTING THE STAGE

The distribution b(y) of observable y is measured with an imperfect detector having
inefficiencies, systematic shifts and finite resolution. It is described by a “response function”
g(x ; y), the distribution of the measured x for every y . Alternative names for g(x ; y):

response function (experimental physicists)
point-spread function (astronomer)
green’s function (theorist)
kernel (mathematician)

Ü relation between b(y) and observable distribution a(x ):

a(x ) =
Z ymax

ymin

dy g(x ; y) b(y)

Ü the unfolding problem:
v CONSTRUCT AN ESTIMATE FOR b(y) GIVEN

+ (estimate of) the response function g(x ; y)
+ a sample of n events drawn according to a(x )
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Discretization

In case a parametric model b(y ; a) with a small number of parameters a exists,
unfolding can be done by extracting the parametes with e.g. a least squares fit.
In practical applications the density a(x ) is sampled with a finite number of
measurements xi , i = 1; : : : ;n .
Ü the available information is finite
Ü a truly model-independent unfolding of b(y) with continuous y is impossible
Ü resort to a flexible description of b(y) with a sufficiently large number of

parameters. The problem has to be discretized.

Ü expansion of PDFs into base-functions �k (x ) and �l(y)

a(x ) =
naX

k=1

ak �k (x ) and b(y) =
nbX
l=1

bl �l(y)

for example : : :
Ü harmonic functions (Ü Fourier-components)
Ü orthogonal polynomial
Ü histogram bins (0th order splines, orthogonal)
Ü B-splines (not orthogonal)
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Discretisation by Histogram Bins

simple intuitive interpretation for coefficients ak and bi

no assumptions about smoothness or curvature of distributions
sufficiently large number of bins required for b(y) to limit quantization errors

Ü base functions:

�k (x ) =

�
1=(xk � xk�1) if xk�1 � x < xk

0 else

�i (y) =

�
1=(yi � yi�1) if yi�1 � y < yi

0 else

Ü discretized Distributions:

ak =

Z xk

xk�1

dx a(x ) and bi =

Z yi

yi�1

dy b(y)

Ü response matrix:

Gki =
1

yi � yi�1

Z xk

xk�1

dx
Z yi

yi�1

dy g(x ; y)

Ü unfolding problem reduced to linear algebra:

a = G � b
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Toy Models for Numerical Studies

Ü PDFs of true distributions on the intervall 0 � y � 1
two Breit-Wigner peaks on a smooth background

b1(y) =
20:334

100 + (10y � 2)2
+

2:0334
1 + (10y � 4)2

+
4:0668

4 + (20y � 15)2

two narrow gaussian peaks

b2(y) = 5:31923 exp
�
�200(y � 0:35)2

�
+ 2:659615 exp

�
�200(y � 0:65)2

�
step function

b3(y) =

�
2 for 0:25 < y < 0:75
0 else

Ü parametrization of the response function

g(x ; y) =
1

�
p

2�
exp
�
�1

2

�
x �

�
y � �y2��2� � �1� 4�

�
y � 1

2

�2
�

gaussian resolution function (parameter �)
quadratic bias as a function of y (parameter �)
parabolic shape of efficiency loss twoards phase space limits (parameter �)
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Illustration

v SHOWS

properties of different models
action of response function
effect of finite statistics
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v IN THE FOLLOWING

take response matrix to be exact,
i.e. no quantization errors
focus on the effect of finite statistics
on unfolding methods
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Specifics of the Toy Model Studies

parameter settings for the response function

b(y) � � �

Problem 1 b1(y) 1=20 1=2 1=10
Problem 2 b2(y) 1=12 0 0
Problem 3 b3(y) 1=8 0 0

histogram diskretisation with equidistant binning
Ü restrict true and observed distribution to the range x ; y 2 [0; 1]
Ü na bins for the observed distribution a(x )
Ü nb bins for the true distribution b(y)
Ü statistical precision of N measurements, relative errors proportional to 1=

p
N

relation between observable and true distribution
hai = G � b

actual measurements fluctuate around expectation values
a = hai+ r

Ü with statistics fluctuation r around zero, i.e. hri = 0
Ü relative size of fluctuations according to assumed statistics
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Illustration
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Ü performance of different unfolding methods: : :
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Bin-by-Bin Correction Factors

Ü simplest and most widely used method
same binning for observed and true distribution
bin-dependent correction factors ck

bk = ak � ck

determination of the correction factors
Ü start with assumption for bk

Ü determina ak by folding (multiplication) with response matrix
Ü calculate ck = bk=ak

ck =
bkPnb

l=1 Gklbl

Correction factors depend on the assumed distribution bk . Possible choices:
Ü (approximate/expecetd) true distribution (unknown)
Ü uniform distribution (“objectiv”)
Ü measured distribution (hopefully similar to truth : : :)
correct result is garanteed only for bk = btrue

k

in general a partial correction should be achievable
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Iterated Correction Factors

v GET INDEPENDENT OF SPECIFIC ASSUMPTION FOR bk
Ü choose initial setting: (for example)

b(0)k = ak

Ü iteration:

b(n+1)
k = ak � c(n+1)

k = ak � b(n)kPnb
l=1 Gklb

(n)
l

error estimate for the unfolded distribution:

�(bk ) = ck � �(ak ) correct for C (~c) = 0

Ü application to test-problems:
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Discussion

correction factors work well if the true distribution is known

Ü no iteration required

Ü stable result

Ü no new information from measurement

conceptual problems

Ü empty bins are corrected to zero

Ü data from outside physics phase space are ignored

first iteration step depends on assumed true distribution

iteration removes dependence on unknown distribution, but : : :

Ü results are unstable

Ü naive error propagation evidently wrong

Ü analytic error calculation not feasible: the iterated result is a highly non-linear

function of the measurements

Ü do it properly: : :
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Improved Correction Factors

fluctuate measurements ~a according to their error
Ü generate N pseudo-samples ~an with n = 1; : : : ;N
for each pseudo-Sample ~an determine ~bn using M -times iterated correction factors
take average unfolded distribution as nominal result

~b =
1
N

NX
n=1

~bn

estimate errors by the empirical covariance matrix of the results

C (b) =

 
1
N

NX
n=1

~bn � ~bT
n

!
� ~b � ~bT

Ü correlations between bins of the unfolded distribution handled properly
numerical studies show
Ü surprisingly large error in the unfolded distribution
Ü strong correlations between neighboring bins
Ü errors grow with the number M of iterations
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Numerical Test

r ootx9.cmd
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consider alternative methods: : :
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Bayesian Unfolding

Ü Unfolding based on conditional probabilities
introduce discrete probabilities pi for the true distribution:

bi = B � pi and ai =

nbX
k=1

Gikbk = B
nbX

k=1

Gikpk

Interpretation of the response matrix Gik as conditional probabilities

Gik = p(measurement i jtrue value k)

exploit Bayes’ theorem to construct an unfolding matrix Hik :

Hik = p(true value k jmeasurement i)

=
p(measurement i jtrue value k) � p(true value k)

p(measurement i)

=
p(measurement i jtrue value k) � p(true value k)P
j p(measurement i jtrue value j ) � p(true value j )

=
Gik � pkPnb
j=1 Gijpj

Hik depends on the unknown distribution bk

Hik corrects smearing, no correction for inefficiencies
application Ü
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Applying the Unfolding Matrix

Ü bayesian unfolding

determination of unfolded distribution

Ü use the unfolding matrix to correct for smearing

Ü then correct efficiencies as described by the response matrix

Ü if necessary determine the normalization

synopsis

qj =
1
�j

naX
j=1

ai �Hij with �j =

naX
k=1

Gkj and pj =
qjPnb
i=1 qi

naive error propagation for qj

Cij (q) =
naX

k ;l=1

@qi

@ak

@qj

@al
Ckl(a) =

1
"i"j

naX
k ;l=1

HkiHljCkl(a)

Ü correlated errors due to unfolding matrix

Ü otherwise similar dependence on measurements as bin-by-bin corrections
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Discussion

v CHARAKTERISTICS OF BAYESIAN UNFOLDING

mathematically sound aproach

explicitly use positvity of probabilities

can move measurements from unphysical region into allowed phase space

no matrix inversion required

Ü unfolding works also for non-square matrices Gik

Ü if needed the normalization B of bi = Bpi is obtained fromX
i

B
X

k

Gik � pk =
X

i

ai

same problem with initial values as correction factors

iteration makes H independent of initial values pi

error Monte Carlo is the method of choise to : : :

Ü reliably determinate the covariance matrix of the unfolded distribution

Ü stabilize the result against statistical fluctuations in the measurements

Ü test the method: : :
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Numerical Tests
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slow convergence (if at all?) with the number of iterations
number of iterations correlates structure in covariance matrix and size of errors
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Fixing the Number of Iterations

Ü observation
too few iterations: result strongly correlated with initial values
too many iterations:result becomes unstable

v CONCEPTAL APPROACH

The number of iteration can be chosen freely. Consequences of a particular choice can be
quantified by means of the covariance matrix of the result. Schematically one has for the
case of a square response matrix:

bunf = H � a = H � (G �G�1) � a = (H �G) � btrue

The unfolded distribution is a linear function of the measurements. The connection with the
true distribution is given by a residual response matrix Gres :

Gres = (H �G)

H = G�1 corresponds to full correction
H 6= G�1 implies residual distortions
Ü the unfolding procedure did achieve a partial correction
Ü improvement of resolution instead of full correction
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Unfolding by Matrix Inversion

Ü restricted to the case na = nb

a = G � b Ü b = G�1 � a with C (b) = G�1C (a)(G�1)T

formally correct

proper covariance matrix

completely useless
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diagonalize the unfolding problem to understand the strange behaviour : : :
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Analyses of the Response Matrix

v REMINDER: SVD FOR ANY MATRIX A[m ;n ] (m � n )
A[m ;n ] = U [m ;n ] �W [n ;n ] �V [n ;n ]T

with UT �U = V T �V = V �V T = 1n and positive definite diagonal matrix W

Ü diagonalization of the unfolding problem
transform measurements x = M � a such that C (x ) = 1
the unfolding problem now reads x = M � a = M �G � b
apply singular value decomposition (SVD) to new response matrix M �G

x = M �G � b = U �W �V T � b or UTx = W �V T � b
introduce “normalized moments” u and v
v = V T � b and u = UT � x = UT �M � a with C (u) = UT �C (x ) �U = 1
which diagonalize the unfolding problem

u = W � v
Ü a simple rotation now relates v to the unfolded distribution b
Ü the diagonal correction factors (“unfolding weights”) are 1=Wkk
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Numerical Studies

Ü compare
normalized moments for measurements and correction factors
expectation for uniform unfolded distribution
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Result

Ü diagonalization of the unfolding problem shows:
The higher order moments uk are exponentially suppressed by the response matrix. To
measure them requires extrem large statistical precision. Accepting those components for
the unfolding means exponential amplification of statistical fluctations.

v NOTE:
The higher order moments describe fine structur of b(y). Using

b = V � v
the eigen-functions (eigen-vectors) for the individual components vi can be read off from
the columns of V . Those

eigenvectors are orthogonal
the number of sign-changes grows with increasing order
the highest order vector
Ü has alternating signs
Ü has the largest correction factors
Ü dominates the matrix-inversion result
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Regularization

unfolding requires nb measurements uk

the effective number of measurements with information about b(y) is smaller
heuristic ansatz to count the effective number of measurements
Ü compare measured values of normalized moments ui with

expectation ~ui , from a (e.g. flat) prior distribution
Ü count only those which are significantly different from the prior expectation
Regularisation:
Ü take those normalized moments from data which differ significanttly from the prior
Ü take the others from the prior
Ü construct the unfolded distribution

Ü in general: replace missing information by assumptions
many possibilities to add information
Ü pure heuristics
Ü assumption about smoothness or curvature of the result
Ü information theoretical approaches (Maximum Entropy)
many possibilities where to put the cut on the measurements
Ü : : : “adjustment of the regularization parameter”
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Numerical Examples
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Discussion

significantly “better” results than straightforward matrix inversion
almost perfect unfolding of smooth structures
difficulties with discontinuities

v EXPLANANATION:
Describe regularization by a diagonal matrix R applied to the normalized moments:

b = V �W�1 �R � u = (V �R �W�1) � u
= (V �R �W�1) �UT �M � a
= V �R � (V T �V ) �W�1 �UT �M � a
= (V �R �V T ) � (V �W�1 �UT ) �M � a
= (V �R �V T ) � (M �G)�1M � a
= (V �R �V T ) �G�1 � a = Gres � b(R = 1) with Gres = (V �R �V T )

The regularized result is equivalent to a smearing of the exaxt result! If the residual
smearing Gres has a resolution better than typical structures in the true distribution the
result appears undistorted. Regularization replaces complete unfolding by improvement of
the resolution function.
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Summary

Ü analysis of the response matrix has shown
unfolding problem often are effectively under-constrained

the response matrix is “ill conditioned”, i.e. the spectrum of the eigenvalues (singular
values) varies over many orders of magnitude.

matrix inversion or a least squares fit of bin contents usually unsatisfactory

regularisation is a possible solution

Ü suppress the not well measured components by some prior information

effects of regularization

Ü often acceptable unfolding results

Ü residual smearing in the unfolded distribution

Ü bias in normalized moments

8 negligible bias with respect to the measured distribution

8 unknown bias in the unfolding result

Ü trade statistical errors against resolution

bias can be controlled through the structure of the residual response matrix or the
correlation lengths seen in the covariance matrix of the unfolded distribution.
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