Basics of Beam Dynamics
In Circular Accelerators

Part 1
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<* The tangential co-ordinate, which is directed
along the central orbit, is designated as ‘s’
(distance along beam).

“* Note that ‘y’ will be used as a general co-ordinate
that can be cither ‘x’ (horizontal) or ‘7z’ (vertical).



Terminology

* In general, an accelerator lattice comprises a series of
magnetic and/or electrostatic and/or electromagnetic
clements separated by ficld-free, drift spaces.

++ In most cases, the lattice is dominated by magnetic
dipoles and quadrupoles that constitute what is called
the linear lattice. Quadrupole and higher order lenses
are usually centred on the orbit and do not affect the
gceometry of the accelerator.

** The trajectory followed by the reference ion is known as
the equilibrium or ceniral orbii.

* Ina ‘ring’ lattice, the enforced periodicity defines the
equilibrium orbit unambiguously and obliges it to be
closed. For this reason, it is often called the closed orbit.
In transfer lines, there is an extra degree of freedom and
the designer is required to specify a point on the
6-dimensional (x, x', s, dp/p, z, 7') trajectory.

+ lons of the same momentum as the reference ion, but
with small spatial deviations will oscillate about the
equilibrium orbit with what are known as betatron
oscillations.

*+ Tons with a different momentum will have a different
equilibrium orbit that will be referred to as an off-
momentum or off-axis equilibrium orbit. Off-momentum
ions with small spatial errors will perform betatron
oscillations about their off-momentum equilibrium orbit.



Example of RACETRACK Lattice

Electrostatic Antiproton Recycling Ring (AD-REC)
QUASAR Design for AD MUSASHI experiment
Is it not similar to Ring with magnetic elements ?

Fixed-Energy Ring

circumference = 7.2 m

quad singlet _
quad triplet
antiproton / k
injection __ 7 e ——— — —
L I I I N

I

90° deflector /

(250 mm radius) ~ Y-corrector x-corrector




Ring parameters

lons pbars
Test ions H-
Energy Range 3 keV (?)
Type electrostatic
Beam intensity 5¢10° ions
Circumference 5.9348 m
Straight sections | 2
Straight section length 1300 mm
Ring acceptance 80 7Zmmemr
Vacuum 10-1 torr
lon rotaton frequency 128 to 37 kHz
lon rotation period 7.81t0 27 pus

Operation time
500 000 turns

4-14s

3 keV pbars
from MUSASHI

trap

AD-RECYCLER Ring Layout

/ neutrals




** Lorentz force:

dp _d
F_dr dt(mV) gvxB) (1)

¢ The three components of this force in a
cylindrical system (r, ®, z) are well known,

F, = (n2)= g(pBo - pOB, ).
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*»* The simplest solution (apart from y parallel to B)
is a circular motion perpendicular to a uniform
field in the z-direction,

O=-91p,=0, (3)
m

This is known as Cyclofron Motion and €, is the
Cyclotron Frequency.



- 0000000 ]
[{ore on cyclotron motion

< Or more simply, equate expressions for the centripetal
force: 7
myvy

qvoBy =—"" (4)
0

<+ This leads to a universally-used ‘engineering’ formula,
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Rigidity, or reluctance to be deviated by the magnetic
field.

Bypy | [Tm]= [3'325 6] Alp| [Gevre] ()




“* Summary:

“*The ‘hard-edge’ model is used for almost all
lattice calculations.

“»In this model, the central or equilibrium orbit
is a stepwise progression of straight sections
and circular arcs of cyclotron motion.

“* For a singly-charged particle (5) simplifies to,

B,p, |[Tm]=3.3356 p [GeV/c]

p [MeV/c] = 300 BR [T, m]

E2 — W02 + p2C2
Q.1. Please derive these formula
p=m, yBC

pc = ByW,=W, + T

mv?/R = e/c [v x B]



Transverse motion in plane o

bending

< It is assumed that the deviation from the circular orbit
will always be small and the angular velocity can be
approximated by v/p, so that,
2 2
d %
Fp = m—_’zo —m-2
dr P

=qoB,

Thus, the magnetic deflection is considered as a ‘central
force’ and is equated to the radial acceleration.



Transverse motion in plane of

bending

“+ Two transformations will be used to introduce the local
(x, s, 7) co-ordinate system that follows the equilibrium
orbit, q q

=V, P=PoFX
dz ds
to give, ,
d x 1 q
2 B b,
ds® pPo+X my,

% Next, the charge to mass ratio is re-expressed using (4)
5, g ne Vg
m Am  Byp,




Transverse motion in plane of

bending

“+ Now expand the field in a Taylor series up to the
quadrupole component,

oB
b, = B(,+[azj X ={B(j)—|BP|kX“'}
Yo
1 (dB
k=- ZJ (7)
’BP|[ax 0

where

k is the normalised gradient. Note that the sign
convention chosen introduces a ‘minus’. In other
lectures, you will surely see a ‘plus’ sign and a different
right-handed co-ordinate system. Welcome to two
differences that you will find throughout the literature.

%* Substituting for the field and remembering that x<<p
gives,

2
d x_l_ 12 —klx=0 (8) Q.2. Please derive this formula

ds” Po




Transverse motion in plane of

“* Note that the theory is based on a hard-edge
model of a sector dipole that looks in plan view
like,

Sector dipole

.,/ Central orbit
N 7
Note orbit perpendicular\\ 7/
to magnet face A4
“* However, we often have rectangular dipoles.
These will require some extra treatment. This is

known as edge focusing.

Rectangular dipole

Note orbit is NOT h4
perpendicular to magnet face )



Transverse motion with a

momentum deviation

“* Repeat the earlier derivation with small

increments in mass and velocity in evidence, So AP/IP #0
that,
3 : )\
F = (.1—((1?1 - Am)(.i—p |—(m+ A}’H)M =q(vy+Av)B,
Todr\ dr” )

<> Now transform time, ¢, to distance, s,

d d
—={yy +Av)—
o =0+ av)—
2.
d;_ 1 _ q B

ds?>  po+x (m+Am)(vy+Av) °

“» To first order,

1 _J_“_Am_mq

(m+Aam) (vy +Av) mog\ m v ) pe po)

1 ( B Ap\]

12 —k]x S Y Q.3. Please derive this formula




perpendicular to bending

<+ Basically the analysis is repeated, except that the
magnetic field has a different form,

d dz
F.= gy [(m + Am) dt] - —q(vo + AV)BP.

d’z _ q

B..
ds>  (m+Am)(vy+Av) "

“* Remember that to first order,

! B OV VU O ")
(m+Am)(vO +Av) mv \ m v, Po\ Do

which gives,




Transverse motion in plane
perpendicular to bending

“* Now expand the field and replace Bp by B,,

dB,
0z

BPEBX:[ ] Z B, =0 for z=0
0

“» Substitution in the motion equation gives,

< But we consider the ‘z Ap/p’ as second order and
discard it to finish with,

2
d_Z_|_ kz =0 Q.4. Please derive this formula

ds?

“ Note that Ap/p has disappeared so this equation
works (to first order) for on- and off-momentum
ions. The k applies to the gradient in combined-
function dipoles. For a pure dipole, k = (0 and the
dipole acts like a drift space.




“* Write the equation of motion in a general form,

d’y
dg; +K(s)y =

1 Ap
o (5) Po

(10) k

where y can be either x or z, and K (s) is the
‘focusing constant’ for the motion. In the plane
perpendicular to the bending, 0 = oo and the
RHS term is removed.

Element K K,
Magnetic combined-function with horizontal bend Po >k k
Magnetic combined-function with vertical bend -k o +k
Pure magnetic quadrupole -k k
Pure magnetic horizontal bend Po” 0
Pure magnetic vertical bend 0 Po”
Drift space 0 0

Q.5. For K> 0 motion is what: stable ? / unstable ?

When K > 0 the motion is stable and sinusoidal.

+*
* .0

When K < 0 the motion is unstable and

hyperbolic.
When K

+*
‘0

1 (0B
-——1Z2| @
|BP|( ox }0

0 the motion is linear in s.

L

*
.0
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Q.6. Please draw field and gradient
vs radius for Quadrupole




Equation x”(s)—k{—l —k(s)r*x(s)=0

with periodic \pz(j;)
coeficient |
SOLUTION
Ansatz: x(s) =a, -cos(@s)+a, -sin(@s)

general solution: linear combination of two independent solutions

x'(s) = —a,m sin(w s) + a,m cos(w s)

%

x"(5) = —a,0° cos(@s) —a,’ sin(@s) = —@”x(s) —_— @

general solution:



Stable motion x(s) = x, 'CDS(.\AKTlS) + X} _llKl sill(JlﬂTls)
k>0 T
L x'(s)=—x, - |K|+Sill( |K|S)+IE]'CDS( |K|9)

General soluton might be
written in MATRIX FORM

Im ................................... J X IV .
= U __________________________________ .I " ) M, y )
( 1

cos( |K|3) in( |K|3

I I T

si
K|

VK TsinG[K) cosfiKf) ),

Q. Please write equation for UNSTABLE motion




hor. defocusing quadrupole: e i /
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e
e
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x'-K#*x=0 [ .... \ ______
--------------------------------- ..

Remember from school:

f(s)=cosh(s) ,  f'(s)=sinh(s)

Ansatz: x(s) =a,-cosh(ws)+a, -sih(ws)

cosh /| K|/ \/|1A—’ sinh /|K |1

J|K|sinh ‘K|f cosh ‘K‘Z

Mdefoc -



TRANSFER MATRIX
Coordinate and velocity of ion in point 2
might be expressed as LINEAR combination
of Coordinate and velocity of ion in point 1

Xo =My X +my, X

XZ’ =m,, X1 +m,, Xl’ Q- PLease derive Matrix of Drift
where L is drift length

++ All these results can be written in the general
form

where y can be x or Z.

** Note that the moduli of all these matrices will be
(and must be) unity. This condition conserves
phase space and provides a useful check.



drift space:

X, = 1% X, +L* X’

X,' = 0% X, + 1% X/’

=
I
=

[
=

M drift —
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T—

=

N



Linear transfer Matrixes

“* The transfer matrix of a focusing element (K>0)

is:

( (= 1 X
cos(\/m() \/m Sm(\/?le) Q.7. Could somebody

(14)

\_\/msm(\/mé) COS(\/|?€) / derive these matrixes ?

%+ The transfer matrix of a defocusing element

(K<0) is:

( coshlJ&]¢) \/Iiasinh(mm
\\/ﬂsinh(\/Ed cosh,J&]¢) )

Vs B <N
(19)

* The transfer matrix of a drift space (K=0) is:

| R’ (16)
0 1




focusing strength of a quadrupole:

focal length of a quadrupole:

equation of mofion:

matrix of a foc. quadrupole:

M =

cos ‘K‘f

—\/ﬁ sin [ K[!

1
JIK]

COs

SN

K

K

e

)

T 57 U.2998-g
A[”E }_p(Gerc)




Calculating trajectories

»* Once the transfer matrices of all the elements in a
lattice are known, then transfer though the lattice
and to all boundaries between elements can be
found by matrix multiplication.

) i

J =M,,1M”1....M3M2M1L Y J (17)
|

LA}) /p Apl p

n

M, M, M,

Note that drawings normally have the beam

traveling from left to right and the matrix
multiplication goes from right to left.

++ This method is universally used for tracking in
lattices.

** We now have 90 % of the basic concepts for
modeling and tracking.



Thin Lens Approximation:

k

COS

) / \/ll?lsin\/maf
—Jklsin (/|k|l cos . /|k|l
[fe| sin \f|| []

matrix of a quadrupole lens M

in many practical cases we have the situation:

|
= —>>]
/ kig 1

... focal length of the lens is much bigger than the length of the magnet

limes: [ — 0 while keeping kl = const



Weak and strong focusing

‘strong’ focusing lattices.

*»* The conditions for weak focusing are:

L_>k and &k >0
2
Po

which means that

nd K.=k>0

(4B W1 i -~

ix )C | Z

E
N
V

\P

+* In other words, the motion is stable (sinusoidal)
in both planes.



+*» The early designers of weak focusing machines
did not usc the normalised gradient k. Instcad
they used a parameter called the field index
denoted by n.

+»» The minus sion in 7 was introduced so that the

1 LS} L2 = = LR

weak focusing criterion could be xpressed as,

O<n<l

+* Originally, the sign convention used for n was
carried over to k& (as used in these lectures), but

later it became popular to remove the minus sign

from k, so it is always necessary to check which
sign convention is in force.

To link the old and new definitions of weak focusing:
. - . aB
Old definition: 1>n>0 or |[> _Fo Z| 50
. p—_ 1 oB, )
use: (Bp). \ ax /.
O N YA

L,)>k and k>0

to get:
) P

Q.8. Please draw shape
of field in classic cyclotron
to provide weak focusing



ELECTROSTATIC
ELEMENTS




< There is a fundamental difference between
electric and magnetic elements. When traversing
a magnetic field the ion’s energy is rigorously
constant, whereas in an electric field the ion can
exchange energy with the field.

» This means that both the mass and velocity of the
ion can vary as the ion traverses an electrostatic
clement. Since the velocity affects the transit time
the kick is affected.

< In most of the literature this is elegantly handled
by using Lagrangian mechanics, but for
pedagogic reasons we will follow an analysis
elements. This shows more clearly where and
when the differences occur and what
approximations are being made.

< The following will treat the transverse motion and
does not apply to elements that are designed to
accelerate longitudinally.



«» It will be assumed that the angular deviations and
transverse excursions in straight elements, i.e.

quadrupoles are always small, so that,

“* the transverse electric field is always perpendicular
to the particle motion and does not affect the
longitudinal velocity and hence the transit time and
kick remain unchanged,

“* the transverse excursions are small so that the
transverse energy change is negligible.

“ Thus, electrostatic quadrupoles behave in
essentially the same way as magnetic quadrupoles.

< This leaves the bends, which can have large angles
and exhibit new effects.

<+ It is further assumed that the elements are housed
in earthed enclosures, so that there can be no net
energy difference between the incoming and
outgoing ions.



** Three-way electrostatic bend: left, right and
straight through. Electrodes are spherical
(concentric) giving focusing in both planes.

< In general electrodes are:
< Concentric cylinders (cylindrical bend), or
<+ Concentric spheres (spherical bend), or
< Concentric toroids (toroidal bend).



£oman

The force, F, acti

field is,

Cdr dt
The three components of this force in a cylindrical
system (p, ®, z) are well known and are written as,

d r

F = m g N

Tyl Sah s S

Fo= (mp'®)=qE, (2 £ 2

%dt =~ =

FZZ—(MZ)Z(]EZ § “‘2
dr

The equivalent of cyclotron motion is obtained by
launching an ion perpendicular to a radial field, so
that E, = E, (constant), Ey = E, = 0, p = p, (constant)
and z = z, (constant), to give,

my

%

where g =ne is the ion’s charge and m its relativistic
mass.

D N

Lyq=- (3)

Q.8. PLease derive formula



Electrical rigidit

0

Magnetic rigidity

___________

Posilively-charged ion
q=ne

pc[MeV] = 300 BR [T-m]

c = ByW, = +
“* Alternatively, the equivalent of cyclotron motion P BYWo =W, + T
is found simply by equating the expressions for

the centripetal force, W, —rest energy

Po
*» This gives the electric rigidity, the equivalent of the
magnetic rigidity. Re-writing (3) as an
'engineering' formula gives,

\Eopo\[kv]:WH)é‘T_][keV] (4)| Q.8.PLease derive formula
Y n

“* where n is the charge number of the ion so that ¢
= ne, A is the atomic mass number and 7' is the
average kinetic energy per nucleon. This relation
defines the central orbit in an electrostatic bend
just as the magnetic rigidity defines the central
orbit in a dipole.



Electrical rigidity PROMPT

2 2 2
mc mc 1
ol 5]

mcz = mocz +7T
2 o) T
T =mpc-(y—1) sothat myc™ =——
’ R P
2 T ¥
mc = +T7 =T——— (B)
(y-1) (y-1)
Substitute (B) into (A)
I, 1 y _T(y+)y-1) ¥
S ] g (2 P R Y




i( (m+ Am + §7i)ipj —(m+Am+ om)
dr dr

Transverse motion in an
electrostatic bend

Consider directly ions that enter with a momentum
deviation, Ap that contains the mass and velocity
deviations Am and Av. Since the bend is in a screened
enclosure, the ion leaves with the same deviations.

Inside the device, the ion can exchange energy with the
electric field and suffer variable mass and velocity
deviations denoted by dm and ov.

Re-writing the radial equation from (2) with the
deviations in evidence,

(vo +Av+ 5v)°

Jo,
This only differs from the magnetic case in that the
force term is changed and the mass and velocity
deviations are separated into constant and variable
parts.

As always, we look for approximations and first we
neglect the effect of the variable mass deviation om
inside the differential, so that,

:qE

P

2 0+ Av+ o)
d ~p—(m+ Am+§n)(”) +Av+6v)

de P

(m+Am+ on) =qE

P



Transverse motion in an

electrostatic bend

As usual we transform the independent variable from
time, ¢, to distance, s, and introduce the local
coordinate x for the excursion,

d d
—=(vyg+Av+ov)
dr L )ds
P=pPoTX
which gives,
dx 1 1
9 - = qu 2
ds?  ( Po T X ) (m+ Am+ on )(vo +AV+ W)

Expanding the RHS and truncating to 1st order gives,

2

2 E N ’
d*x 1 4Ep l_{AerzAi}_ |:(5?2+2(51:|

e - 2 ¥ Y
ds ( PoT+X ) my, m Vo | m Vo
Constant Variable increments
increments depending on the
defined by excursion x inside the

incoming beam.  apparatus.



Transverse motion in an

G0N L2 TV <+ It is now necessary to evaluate the field between two
cylindrical plates biased at £V/2 with respect to the
screening enclosure. Neglecting any fringe fields, the

Cylindrical cqui-potential surfaces will be concentric with the
Electro electrode surfaces, so that,
Static
Deflector 3 Egl=E, (7+Al)
(ESD) s |y
g ¢ (C+Ar)
po (po+x)
/72 V2
Central orbit EO/OO = Ep (pO + ’X‘)
E,=E,=FE _Po (6)
(pg + x)
<+ Substituting for the field from (6) and ¢/m from (3)

gives,

d—f S S S —{A’”Jr zA"} _{‘S”Jr 25"} (7)
ds*  (po +x) (py +x) m Vo m 40




Linearized equation of transverse motion
In electrostatic deflecting elements

N

<+ The combination of (7), (8) and (9) finally gives the

radial motion equation, DIPOLE Magnet
|

Plane of bend

d’x 1 A 5

5t Z(Z—ﬁz)xz——p(Z—ﬁz) (10) dcx (1 ) 1A
7 9

dS po pO p dS po‘ pO po

“* This only differs from the equivalent magnetic equation
Jor a pure dipole by the factor (2-/#). So apart from this
additional term, the same general solutions can be used
to construct the transfer matrices.

< At relativistic energies (as f—1), the difference
between the motion equations disappears.

<+ Comparing magnetic and electric bends shows that:

At low energies, the (1+y) term in the numerator of the
rigidity improves the efficiency of electrostatic bends.
The convenience of being able to shape the field with
simple mechanical surfaces, calculate the field from
simple mechanical dimensions, the low power
consumption and the absence of hysteresis and heating
leads to these devices being widelv used.



Matrices for on-momentum ions

(K>0) is
L "—f , ?f
i@(\ l N gm(; ) (11)
—/[K]sin (\K 14 ) COS(\:"K ‘

¢ The transfer matrix of a defocusing
element (K<0) is:

cosh(,/K]¢)

JK | sinh(|]K7)

L inh (\\?f )

cosh(|/[K]¢)

(12)

SAME TRANSFER
MATRIXES AS FOR
MAGNET !

*» The transfer matrix of a drift space (K=0)

1S.

where,

|

1

0 1

¢
] (13)

K =

0

L 2-p°). K =

0

(14)

Cylindrical ESD



Arbitrary shape of ESD
| Electric field INDEX

<+ Three-way electrostatic bend: left, right and
straight through. Electrodes are spherical
(concentric) giving focusing in both planes.

< In general electrodes are:
+“» Concentric cylinders (cylindrical bend), or
«* Concentric spheres (spherical bend), or
< Concentric toroids (toroidal bend).

ne = — (RIEg) dER/dR =1 + Rip

K= (@-Nne - B) | R?
K, = (ng —1) / R?

ELDEFL focusing sector magnet
condition
1<ng< 3 O<n,<1
ESD type | cylindrical | spherical Hyperbolic Anti-
spherical
P p=o pP=R p=-R/2 p=-R
ne 1 2 -1 0
Ky 2/R? 1/R? 4/R? 3/R?
Ky 0 1/R? —2/R? -1/R?
focusin X | Equal focus Focus X Focus X
driftiny f=1, Defocus Y | DefocusY

Q ?. Can You derive coefficients for TOROIDAL ESD ?




Equation of transverse motion in ESD
with CYLINDRICAL shape electrodes

second order approximation

x”+i2x—i3x2 =0
Req Req
y”:O

Linear approximation

Q. Please write LINEAR equation
of transverse motion in ESD-CYL

IN the Linear approximation Cylindrical deflector
focuses beam in radial direction with DOUBLE
strength wrt Sperichal electrode and it is DRIFT

In axial direction

Equation of transverse motion in ESD
with SPHERICAL shape electrodes

Second order approximation

x”+—2x—i3x2 _3 —y?=0
Req Req 2-Req
y”+iy_ixy—0
2 3 o
Req Req

Linear approximation

1
x”+—2x:0

an
Y

1
y'+—y=0
RZ,

In the linear approximation spherical deflector
focuses beam in both directions
with the same force



Example of ESD with plates of SPHERICAL Shape

| A\

DEH QEV QEH

/

€xp

DEV scraper  cup  viewer

1m

e

- ' Figure 4: Decays of stored O beams at 22 keV.
Figure 3: Picture of the ELISA storage ring.



OPERA / MAD-X simulations of ELISA Ring with ESD

plates of SPHERICAL and CYLINDRICAL Shape
(O.Gorda, A.Papash)
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Figure 1. Model of ring used in OPERA3D. ' [ESD-CYL

Dimensions and distances between elements
similar to original ELISA design [2].

Figure 15: Amplitude dependent tune shift in the ELISA
for the ESD-SPH and ESD-CYL mode.

25

04 -
T 5 ESD-CYL
=
= o ]
!
. . . ESD-SPH
Figure 2: Model of ESD-SPH deflector used in field simu- 0 . : : ; : : .
. . -40 -30 -20 -1 il 10 20 30 40
lations with OPERA.  [mem]

Figure 16: Dynamic aperiure of the ELISA storage ring.



ELISA — OPERA-TOSCA 3D simulations

I H_ g - 5 M 20
50
Figure 3. Ring geometry was split in multiple sectors X=R-Reo, (mm

and parts to provide correct distribution of electric Figure 5 Radial acceptance of ring with 160° ESD_CYL.
field. Shown is region with quads, 10° parallel plate (a) middle of long straight section, azimuth 6=0°,
deflector and 154° cylindrical electrodes (b) middle of ESD-160, azimuth 6=90°.
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X=R-Reo, mm

20

Figure 4. Dynamic aperture of ring with 160° electrostatic Figure 5 Radial acceptancezgfqring with 160° ESD-CYL

deflectors of cylindrical shape. OPERA simulations: (a) middle of long straight section, azimuth 6=0°,
a) middle of long straight section, azimuth 6=0°,

b)  middle of ESD-160, azimuth 6=90°. (b) middle of ESD-160, azimuth 6=90°.



ES Focusing

¢+ As for the magnetic case,

y my, My, Iy y
y' =| My My Moy y' (15)
Aplp), 0 0 L Naplp)
% The terms m,, m,, m,, and m,, have the form from the
earlier slide. New terms have tile form,
For K>0 :
I 1
My = i(2 -B )__ [1 - COS( |K’ﬁ)]
p K

|
sin

il

Ix]e) a6

My = i‘(2 - )8 ’ )i
P

For K<0:
m,, = i(Q—ﬂz)%ﬁ cosh( K E)— l]
n!l 1
Myy = ir(2—,6’ ); Smh(\/ma (17)

il

[Upper sign for horizontal and lower sign for vertical bending. K values
for cylindrical, spherical and toroidal electrodes are in the Formula

Book.]



Transverse motion in an
electrostatic quadrupole

Vi2 - /

<+ Invoking the ‘small-angle’ approximation gives,

d’x

mv' —— =qE,
ds
d’z

mv' =~ =gE,
ds”

[Basically we are following the derivation in Lecture 2]

<+ The field components E_ and E, are derived from the
potential,

V
2a°

d=-——(2-22) (18)




Transverse motion in an
et gl 2 < The field components are:

Y
E =- = X
ox a
oD
E = — = V Z
z 2
Jdz a
<+ After some substitutions:
dx Vg ,
2T o oA T 0
ds~ a my
<* The main difference between magnetic 5
and electrostatic quadrupoles is the way in dz + Vg =0
. . o) T
which the K-factor is expressed: ds® a’'mv’
whaoro
<* For electrostatic lenses, we use the voltage THEILE A
across the electrodes because the potential is Vq 1 V
well defined and a simple calculation can lead K = * =7F (20)
to an accurate knowledge of the field. ! 2 2 ‘ ‘ 2
2 . amy Ep,a

o Whereas for maonets. the corresnondine nole

AE LD AU RIa{ie 1A 0Ty TEAL AFA R \fu vllv 124 | IVl'v

tip field is difficult to measure and the curren
in the coil is related in a non-linear manner to
this field. For these reasons, the gradient on
the axis is preferred.

and the matrices (11) and (12) also apply.



Straight parallel-plate deflectors

Deflecting electric field, E

_—
S \ N e -—’-
A J - - u J':
Y Y Y Y
Positive ion with

|
= velocity fe and charg
to-mass ratio e/m

Deflector plates length, L -V/2

*» Straight parallel-plate deflectors are frequently used
for switching.

*» Although they look simple, the detailed analysis is in
fact more complicated.

*» First the central orbit is not circular. It is parabolic
and that is already an approximation.
2

S P
Xco =—7—
2p,
where X and S are survey coordinates not local beam

coordinates.

*» The vertical motion is treated as if it were a drift space
and the horizontal motion can be approximated as,

x=x0+x6.s‘+{A—5(2—,52)—1} 23;0
0




* The electrostatic devices in this lecture are

mathematically valid for all energies.
However, the lecture is more appropriate
for energies above a few MeV.

In the present course, you will also come
across much lower energies, for example
for electron guns.

At lower energies (i.e. non-relativistic), it
is more usuai to use a cylindricai co-
ordinate system and to include energy
changes (which will be proportionally
large) into the equation of motion in a
more basic way. Cylindrically symmetric
lenses such as the Einzel electrostatic lens
and the Glaser magnetic solenoid lens are
more frequently used than quadrupoles in
this part of the parameter space.

ummar

L
We have seen how the transverse motion in an

electrostatic bend is affected by energy being
exchanged with the bending field.

The resultant equations for the bend are basically the
same as those of the magnetic case with an additional
multiplier (2-p2).

The case of the quadrupole was treated according to
the ‘small angle’ approximation. This neglects the
energy exchanges with the field and the basic physics is
then identical.

We have also seen that to define the strength of an
electrostatic lens, it is customary to refer to the voltage
on the electrodes and the radius of the inscribed circle.

The equations presented are entirely consistent with
the matrix approach used in accelerator theory.

A large part of electrostatic lens theory that applies to
low energies and uses cylindrically symmetric Einzel
and Glaser lens has been omitted.



TWISS FUNCTIONS



Principle of STRONG Focusing

PERIODIC STRUCTURE
Ring Lattice consists of N equal cells.
Each Cell consists of Focusing / defocusing
elements and bends
(magnetic or electrostatic...)

Focusing - defocusing elements alternate

Q. What is the difference of Strong focusing
from Weak focusing ?



Weak focusing must provide focusing
In both direction simultaneously
While strong focusing -

It is alternating of focusing /defocusing elements



2 Hill equatrion

3.) The Beta Function ¢y + Ky (;)y— — () Motion with PERIODIC
FORCE

. . . KY (s+L) = KY (s)
General solution of Hill s equation:

@) x(s)=eBls) -cos(y(s)+P)

&, @ =integration constants determined by initial conditions
B(s) periodic function given by focusing properties of the lattice < quadrupoles

P(s+L)=p(s)

Inserting (i) into the equation of motion ...

W(s)= Iﬂ(s)

Y(s) =, phase advance* of the oscillation between point ,,0* and ,,s* in the lattice.
For one complete revolution: number of oscillations per turn ,, Tune*

Ay 1Turn _ | § |

1 ds
0 =—. =
= oz Y BGs) Qy 2T

Clrc

B,(o)

do



Beam Emittance and Phase Space Ellipse

(D) x(5) =& * f(s) ¥cos(w(s) + @)

zeneral solution of

Hill equation 1

2) x(s)=- #{a(s) *cos((s)+ @) +sin(y (s) + )|
JBGs) { .
from (1) we get |
(s a(s) = _—l S'(s)
COS(W(S)JF@ \F \/ﬁT 1+o:(s)
=5

Insert into (2) and solve for &

£=7(5)*x7(5)+ 2a(s)x()X'(5)+ S(s)x(5)*

* & is a constant of the motion ... it is independent of ,,s“
* parametric representation of an ellipse in the x x* space
* shape and orientation of ellipse are given by a, p, y




4.) Emittance: The Phase Space Ellipse

particel trajectory: x(s) = \/g\f B(s) cos {W(S) + 915}

max. Amplitude: X(s)=+gB —> X atthatposition ...7
.. put x(s) into &= y(s)*x”(s)+2a(s)x(s)x'(s) + f(5)x'(5)” and solve for x"
s=y-gB+2a el -x' + px"*
—— X'=-a-e/p

< A high p-function means a large beam size and a small beam divergence. /
L]
...etviceversa !!!

a = gero

% In the middle of a quadrupole f is maximum, } r
X

... and the ellipse is flat



0.) Remember:
Beam Emittance and Phase Space Ellipse:

equation of motion: x"(s) —k(s)*x(s)=0

general solution of Hills equation: X(5)= Je* VA(s) Feos(y(s)+@)

beam size: o — &R ="mm"
4 3 2 _l I
g =7(5)* 17 (s) +2a(5)x()X'(s) + A(5)x'(5) a(s) = , B (s)
' R a(s)*
¥ & Is a constant of the motion ... it is independent of ,,5“ y(s)= B(s)
* parametric representation of an ellipse in the x x* space
* shape and orientation of ellipse are given by a, f, 7
h —:}'J% X -
ey ;‘.,.,...J__> ________ < ?ﬁ ,.s_ﬁ' *u'iﬁs
1T il
ad i
/ //'/ gz /
e




Geometry of the phase-space

ellipse

m < —qufg/(ﬂ'}’)

A
# —a~ E ()

-

N EN(7P)
NEN ) 1T ™

Area =€ = 71'(7);2 +20yy + ,8}"2)

Practical emittance definition that defines ellipse:

E = 73'(7)/)’21—0' + 206/.}’]-()'}?1’-()' +ﬂy}”21—0



1.) Liouville during Acceleration

:

|

Q
N

£=y()*X () + 2a()V()X'(8) + F()¥'(5)° J |

Beam Emittance corresponds te the area covered in the |
x, x" Phase Space Ellipse 7 7 -

Liouville: Area in phase space is constant. L‘/

But: ¢ # const !

Classical Mechanics:

phase space = diagram of the two canonical variables
position & momentum

X Dy

oL
p,= ‘ ; L=T-V =kin. Energy — pot. Energy

=—
0q ;




According to Hamiltonian mechanics:
phase space diagram relates the variables q and p

g = position = x 1 _ X
p = momentum = ymy = mcyf, e

Liouvilles Theorem: I pdg = const

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

x

, _dx _dxdt [

X = = where f=v./c
ds dtds [ S
‘ pdq = mcI yp.dx
] pdq = mc?”ﬁjﬂ? dx ’ 1 the beam emittance
— = &= Ix dx o€ — shrinks during

I acceleration ¢~1/y



3.) Dispersion: trajectories for Ap /p # 0

92 e e T L
.. MHPE YOU HU

Force acting on the particle

7 2

d” mv-
F=m—-:-(x+p)- = —eB. v
dt” xX=p )
S
remember: x =mm , p=m ... 2 develop for small x
d’x mv’ | x
mo (1 )= eBv
dt* yo, o, "
. . . : OB.
consider only linear fields, and change independent variable:t — s B — B j+x—=
- ox

—e B

x"_l_Lj-_iJ: O_Qg
R GRC]
oo

... but now take a small momentun error into account !!!

P=pytAp



Dispersion:

DR SR I ; R A g e aw —, 1 — I A.p
f(‘.’-lt.'.fﬂf JUJ" ML RO MErnLEei €ryroi A A 0 — ~ — 3
Po+Ap Py Po
. | X —e B A xe A
' — 4 = Y ‘l_;eBD— trJng:wzer_f.s; ‘l;
£ P Po Po Po Po
\ﬂ_) \_Y_; —_—
1
— — k# x ~ 0
o,
A 1
x"+ lz—k:x: P
P Po P
| A |
x”—|— .X'( S —k): p *
P Po P

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion.
= inhomogeneous differential equation.



Dispersion:
oo Lo Ap
X+ x(——k)=——
P p P

[ x[(s)+ K(s) x,(5) = 0
x(s) = x, (s) .
X(8)+ K () x,(5) = 2P

general solution:

/ "

Normalise with resnect to An/p- /
Normalise wilh respect 10 Ap/p: /
x;(s)
D(s)=-

Dispersion function D(s)
*is that special orbit, an ideal particle would have for Ap/p =1
* the orbit of any particle is the sum of the well known x; and the dispersion

*as D(s) is just another orbit it will be subject to the focusing properties of the lattice



Example: Drift

1 ] f 5'11_~~ _ 3.11f~~
M prip = [ - ] D(s) = S(S)f —C(8)ds - C(s)f —S(5)ds
1 7 0 =0 0
iwDI‘Iﬁ — 0 1 0
0 0 1
Example: Dipole
| [
CO-Si ,L)Siﬂi D(:;) = ,Q'(l—COS—)
P P f
iwDipofe - 1 ] / —> o /
——SIn—  COS— D'(s)=smn—

j2, 2, y2 y2



4.) Momentum Compaction Factor:

The dispersion function relates the momentum error of a particle to the horizontal
orbit coordinate.

inhomogeneous differential equation

X"+ K(s)*x = 14r

P P

general solution

x(s) = Xg (s)+ D(S)AT‘D

But it does much more:
it changes the length of the off - energy - orbit !!



particle with a displacement x to the design orbit
- path length dl ...

particle trajectory

dl _pt+Xx ............ aeesanesnnie
dS p . .

/ \ design orbit
> di (1+ - st

P(s)

circumference of an off-energy closed orbit

I\p = f)df § 1+ YAE remember:
pPs) Ap
Xpap(5) = D(S)T

Ap +( D(s) * The lengthening of the orbit for off-momentum
Ol = ‘? ) (s) ds particles is given by the dispersion function
Y P and the bending radius.



.. > [
Definition: °%f 4 Ap
P

L »
1~ D(g))
= g =—¢| ——|ds
L~ p(s)
. 1
For first estimates assume: — =const
o,
jD( S)ds = z (:Idfpafes)*<D>d;Po;e
dipeles
1 11 1 27 (D)
A = =l (D)—==2ap(D)— —> a_ ~—(D)~r -~
D Ld;?.< >p L f£< >p cp L< > R
Assume: V=
ST &I Ap a., combines via the dispersion function
— T LE = U ? the momentum spread with the longitudinal

motion of the particle.



Resume":

beam emittance:

Ap/p #0 inhomogenious equation:

... and ist solution:

dispersion in a sector dipole:

3x3 transformation matrix:

momentum C()iﬂpﬂ(‘ﬁﬂ.’?.’

| A
z_k): £
Po

x4+ x(

x(s) = x5 (s)+ D(s)- 22
p

D(s)=p-(1- cosi)

f
X C S D
¥ | =l s D
A
% 0 0 1

B —

1
D'(s)=sm—
P
X
xf



“* Chromaticity refers to effects caused by a momentum

Aanandanca Than aman arigng haratign than oantfizm
UCPCIIUCIILC 111!: uaulc dl DU vLuaupvu LllC lllUlllClllLIlll

of an ion is closely analogous to the frequency, and
hence the colour, of light in classical optics.

%+ The dispersion function that arises from the
differential bending in dipoles for ions of different
momenta is strictly a chromaticity effect, but it is not
referred to as such.

% The effect arising from the differential focusing with
momentum causes the betatron phase advance or tune
in a ring to change with momentum. This is generally
known as the chromaticity and can be defined in two
ways:

0=LL o =242 o

Apl p Apl p

The first definition is the more widely used, but the

second definition is liked for its svmmetrv,

WFAALR WA LAEAWANFES R)J AREARNR/LE ENJEA AWLT J ALRRRAN/ WA J

< The next level of chromaticity is the variation of a and
p with momentum. This is treated by formulating a so-
called w-vector, which is too advanced to be tackled
here.



LONGITUDINAL

PLANE



4+
* .0

\/
* ‘.0

\/
* .0

In a ring, the RF period will be related to the
revolution period by a factor called the harmonic
number, /1,

= Revolution. period (7)
RF period

In most cases, the time to cross the gap will be

very small compared to the RF period and the ion

will be fully relativistic, so that the Transit Time

Factor will be close to unity.

In this case, the energy gained by the beam will
be, :
AgE = qVRF sin ¢ (8)

[0, refers to the synchronous ion]



The harmonic number, /2 sets the number of RF

oscillations in one revolution. There will be one stable

DT haralat v DI ccnillatinm 1 a4 L hinalafto ol
IND UUCACUL PUl WD UdLilduUvil,y LG 71l JULKRCLWL dl1IU
correspondingly up to # bunches in the machine.
) I f
JRev — -
Txe, 27R

ch |
.
Tre 27rR\/ (1+T/E,)

The magnetic field ramp is the ‘driving’ parameter
behind the RF programmes for f, Vi, and ¢

Fast cycling machines have resonant power supplies.

B, .. B Maximum dB/d¢
K// \ at mid-cycle
B t

min
>

Beam

Slow cycling machines are ‘ramp and hold’

B . 7 7 dB/df mostly
/ constant with
. ¢ ‘round in’ and
o » round-out’ curves

Beam



Phase stability

Lagging proton
“Synchronous protc

— V=V siny¢

0 I\ o
[ -
l t
I

| ABY l
ql"_‘Head’ (limit)
; of bucket
I

| I

Below transition This case is intuitive.
< Lag behind -get more energy - catch up.

\J

% Get ahead - need less energy - fall back.

Lagging proton
‘Synchronous proton
V=V sinwpet

Note shift in position of

1 '® t o RF wave from below to
: : above transition. This
I | phase shift is needed to

maintain the phase
stability.

‘Head’ (limit),
of bucket : '

>
9 9)

.e.

J

|

-m \.V T

Above transition This case is not intuitive.
<+ Lag behind —need less energy - catch up.
“+ Get ahead - get more energy - fall back.




Figure 14 1llustrates the possible effect of a sinusoidal voliage applied to two particles

according to the respective phases.

VRFJK -

synchronous particle..

Figure 14: Sinusoidal voltage applied to two particles
( ¢ = 0is at zero crossing for synchrotron)

Let us consider a particle P turning in a synchrotron with an energy below the transition

(n = 0). At each turn, 1t crosses a RF cavity with the voltage

If the revolution frequency of P 1s equal to the RF frequency, and 1t P armives at the

time t =0 (phase zero), this particle i1s neither accelerated, nor decelerated.



3.4 - PRINCIPLE OF PHASE STABILITY

TT'I tha f\1'ﬂ"i"lll"‘|'|'li NATAOT ‘]T'\]"\ Wra natra f"f'\T'lQ‘if]ﬂ1'ﬂ e ] 1"\']1"'1‘{"'9 p ‘]T‘I“I‘T”‘T'Il"l’ in tha ‘F catrityy ‘]J"Ifl"\
A1l Uil 1.1].‘- VAL ILLD P(ILHELUPLJ FY¥ % LI0 Ve WUlladibivwd Wil O lJ(IJ. Livw i 14 |:| carray LJ.I.E 481 ULllw A%d A e \'Jl-.\’ ¥Y ALaa
o nmhaca b =0
e 1lcdoT l‘lJO LV
T at 310 mmarprdar svmtrr o ovosdiala T osscrrss e wxrath o svhnca  diffacant o 2mae Mer  1£Y
L/ACL U CULISIUCT HTUW d pdlliGic J.—1 dlTIVILE WIUL d pPlidat ULLICTITIL U LTIV (11, 1Y)
The energy gain is :
AE = el . sing, (73)

The velocity increases. Assuming n > 0 (below the transition), the path length increases,

the revolution period decreases and the revolution frequency mcreases.

_dt  (AE>0) B
cE=0) TS ;
NI +dt (AE<0) |7
|
;/| h‘b

Vir

A

Vm

&
L J

Figure 16: Synchronous particle with ¢s =0 and >0



This separatrix determines the RF bucket (Fig. 17)

VRF 4

P1

=

Figure 17: Amplitude variations and RF bucket



From (92) and (99), the motion of the non-synchronous particle is given by the system
of differential equations :

d(ap) Ve (100)
SH1¢P — S11
P iR (sing — sing, )
d 1nheo
_¢ _ ? A Sﬁp
dr . (101)

the variables are the momentum Ap and the phase ¢.

A simplified expression 1s given by :

|~ A (sin.;ﬁ—sinqés) (102)
1 g
| B Ap (103)
L [#)]
where
eV
4 = & (104)
27 R
P nhw, nhp. c | (105)

)2 p; R,



SMALL AMPLITUDE OSCILLATIONS

Equation (102) can be written :

ﬂlff@‘
dt| B dt

J — [4](sing—sing,) 0 . (106)

We assume that variations in time of quantities between square brackets are slow
compared to the variations A = ¢ - ¢s.

Hence equation (106) becomes in the first approximation (B # 0) :

2 2
Q
d ‘75 + —= (sing-sing, ) 0 (107)
dat- cosg,
where
eV _nhp c
Q. = —A4Bcos¢, = - R2 0 ¢, (108)
- }IPS 8
or Q7 = 0 cos ¢ (109)




4.3.2 Second approximation

We consider particles which remain close to the synchronous particle. Their variations

in phase and in energy are small. We develop sin ¢
sin (ps + A ) = sindgcos Ap + cos g sin A

sin g =

To the first order :
sing = sing, +cos¢, Ag

(an ¢ — sin @, ) = Ag¢cosg,

and

To the second order :
Py d(4g)
dt’ dt?

Under these assumptions, (107) becomes :

d” (A :
—( Ca{))JF_QH; A = 0 (113)

dt’

For small amplitude oscillations, we obtain the equation of a harmonic oscillator where

(25 1s the angular frequency.
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Stability condition

ncos ¢gg = 0

nn =0,

n < 0,

cos¢p, = 0,

cosg, = 0,

0

2| =

.
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